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Abstract

The finite element method (FEM) is a computer-aided mathematical technique for ob-
taining approximate numerical solutions to the abstract equations of calculus that predict
the response of physical systems subject to external influences.

A typical FE code was parallelised using theOpenMPprogramming standard for shared
memory machines. The original direct linear algebra solver has been replaced by an itera-
tive method. The parallelised code scales on the8-processor shared memory Sun 3500 at
EPCC.
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1 Introduction

The finite element method (FEM) is a computer-aided mathematical technique for obtaining
approximate numerical solutions to the abstract equations of calculus that predict the response
of physical systems subject to external influences. It is widely used for a wide range of problems
and in many application areas.

OpenMPis a new standard allowing portable code for shared memory computers to be written.
Shared memory computers are flexible and provide large computational power at relatively low
costs. They are becoming more prevalent both in academia and in industry.

EPCC has recently installed a new shared memory machine. A large number of applications,
including many finite element calculations, are expected to use this machine in the near future.
Therefore, this project provided the opportunity to gain useful experience in parallelising a
typical finite element code on this type of machine.

The linear algebra direct method of the finite element code is to be replaced with an iterative
method which will give the code better performance for very large problem sizes.

2 Background

2.1 Shared Memory Computers andOpenMP

An increasing number of parallel machines make use of the shared memory architecture. In this
type of platform each processor has access to a global memory store and processors communi-
cate with one another by accessing the shared memory. This communication paradigm simplifies
programming multiprocessor machines by removing the requirement for explicit communica-
tions.

Parallelisation of codes using shared memory is mainly carried out using compiler directives.
Until recently each manufacturer provided their own set of machine specific compiler directives
which, while they were similar in style and functionality, meant that codes were not trivially
portable. TheOpenMP[7, 8] standard was designed to address this issue and to provide a stan-
dard interface to shared memory achitectures.OpenMPis a specification for a set of compiler
directives, library outines, and environment variables that can be used to specify shared memory
parallelism inFortran andC/C++ programs.

EPPC has recently installed a new Sun Enterprise HPC 3500. It is an symmetric multi-processor
(SMP) system with eight400 MHz UltraSPARC-II processors,8 Gbyte of shared memory and
54 Gbyte disc space. All the work decribed subsequently was carried out using this machine.
The nominal peak performance is 6.4 Gflops (400 MHz � 8 processors� 2 flops per cycle).
However this is only an interim service. A new machine will be installed in the year 2000. This
will consist of a cluster of R24s, each of which will be able to hold up to24 UltraSPARC-IIIs.

2.2 The Finite Element Method

The finite element method (FEM) is a flexible and powerful computational tool used widely in
industry and universities to solve problems in many areas of engineering, science and applied
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mathematics [3, 6]. Its main advantage compared to other discretisation schemes is its ability to
handle problems with very complex geometric features and the associated difficultly of encor-
porating their boundary conditions. In fact, the consequence of this procedure allows boundary
conditions to be encorporated naturally without the need to resort to some special computational
device at the boundaries.

Simliarly, as with other discretisation methods, the problem domain is partitioned into smaller
regions known as elements. These touch without gaps or overlapping. Typical element shapes
are triangles and squares for 2D problems while tetrahedrons and bricks are used for 3D prob-
lems. These basic elements can be distorted to fit complex geometries.

The essence of the FE method is quite simple. We wish to find the approximate solution to an
equation that models the behaviour of the problem subject to certain boundary equations. The
general two-dimensional boundary-value problem in residual form is

RU (x; y) = f

 
@2U

@x2
(x; y) ;

@2U

@y2
(x; y) ; U(x; y) ; x ; y

!
= 0

whereU is the exact solution.

Boundary conditions can be composed ofU , gradients ofU or a mixture of both. We can now
replace the exact solutionU with the approximate solution�U with the result that the residual is
no longer zero.

R �U (x; y) = f

 
@2 �U

@x2
(x; y) ;

@2 �U

@y2
(x; y) ; �U (x; y) ; x ; y

!
?
� 0

The approximate solution�U across each element is composed of a linear combination of rela-
tively simple known functions�(e)j

�U (e)(x; y) =
nX

j=1

aj�
(e)
j (x; y)

where�U (e) is the approximate solution across the element,�
(e)
j is a known function, commonly

known as trial/shape function for each element nodej andaj is the contibution of shape function
j to the elemental solution.n is the number element nodes.n = 3 for a triangular element.

The elemental solution for a triangular element using linear shape functions is illustrated in
figure 1.

The FEM requires that�U (e) is an interpolating polynominal. The coefficentsaj represent the
value of the solution at each nodej of the element. This implies that the trial functions have the
“Kronecker delta property”. Thus

�
(e)
i (xj) = �ij =

(
1 j = i

0 j 6= i

The shape function associated with node1 for the linear triangular element is shown in figure 2.
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So far there is an infinite set ofaj ’s that could approximate the solution over the element. We
need to find the numerical values that will makeR(x; y) as close to possible to zero across the
element.

This can be achieved by introducing the condition that the residualR �U (x; y) has to be orthogo-

nal to the trial fuctions�(e)i . This leads to the following equations for each element(e):ZZ (e)

R �U (x; y) �
(e)
i (x; y) dx dy = 0 i = 1; 2; : : : ; n

where the double integral means integrate over the area of element(e). This equation is also
known as the “Galerkin criterion” and is a special case of the “Methods of Weighted Residuals”
(MWR).

The definition of�U is substituted into the above equation. Integration by parts leads to leads to
a reduction in the order of all differential terms and allows boundary conditions to be introduced
during the numerical solution.

The governing equations of a problem have now been transformed into a set of algebraic equa-
tions for each element which are then known as the elemental equations. Note, that the algebraic
equations are the same for each triangular linear element for those problem. The elemental equa-
tions for each element used in the problem can be generated using the geometric and phyiscal
properties prescribed.

In abbreviated matrix notation the element equations can be written as

[K](e)a(e) = F (e)

whereK(e), a(e) andF (e) are the stiffness matrix, displacement vector and force vector respec-
tively. This terminolgy derives from the FEM’s origins in structural engineering. All boundary
conditions are located in the force vectorF .

It is obvious that unless one element is being used to model the whole problem domain then
the elements have to be connected in some fashion to mimic the continous nature of the orig-
inal problem. This is achieved by adding the elemental equations together using the fact that
elements share nodes and hence the approximation is continuous as shown in figure 3. This
process is known as assembly which produces a global stiffness matrix, a global displacement
vector and a global force vector.

A global set of linear algebraic equations are formed. In FE problem applications this will
produce a sparse positive definite stiffness matrix which can be efficiently solved using direct
and iterative methods.

2.3 Iterative Methods

The term “iterative method” refers to a wide range of techniques that use successive approxima-
tion x(0); x(1); : : : to obtain a more accurate solution to the system of linear equationsAx = b

at each iteration.

As the matrixA is only accessed via matrix-vector-multiplications, the sparsity of the matrix,
and matrices typically resulting from in finite element analysisaresparse, can be exploited. Fur-
thermore this provides a straightforward way to parallelise the calculations, as the computations
for the different entries in a matrix-vector-product are independent.
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Figure 3: Two finite elements sharing the nodes2 and3

Although some iterative methods, such as the CG-Method, are guaranteed to find the exact
solution after a fixed number of iterations a good aproximation is usually found after signifi-
cantly less iterations. This is the case if the matrix has a certain form of regularity, e.g. several
Eigenvalues being (almost) the same.

For large sparse systems of linear equations iterative methods are usually prefered to direct
methods (such as Gauss-elimination),

The following iterative methods have been implemented. For an “easy to use”-overview over
more iterative methods see [1].

2.3.1 CG-Method

The “conjugate gradient method” [10, 1] is a popular and easy to implement method. It can be
used if the matrixA is symmetric and positive definite. There are generalisations for indefinite
matrices [9]. For a discussion of the convergence see [12]. For a history of this method with
annotated bibliography see [4].

This method exploites the fact that the solutionx̂ = A�1b of Ax = b minimizes the function
f(x) = 1

2
xTAx�bT +c (with c an arbitrary scalar). In each stepf is minimised in some search

directiond(i). The vectorsd(0); d(1); : : : areA-orthogonal (i.e.d(i)TAd(j) = 0 for all i 6= j).
More preciselyd(i) is defined to be theA-othogonal part of thei’th residur(i) = b � Ax(i) =
�f 0(x(i)), i.e. d(i) defined by beingA-orthogonal to all previousd(0); d(1); : : : ; d(i�1) and by
d(i)�r(i) being a linear combination of thed(0); d(1); : : : ; d(i�1). It can be shown that fori � 1,
d(i) � r(i) in fact is a multiple ofd(i�1), so that it is no necessay to store thed(i)’s. Moreover
x(i+1) can be shown to minimisef in x(0)+spanfd(0); : : : ; d(i)g = x(0)+spanfr(0); : : : ; r(i)g.
From this fact one can see that the method converges in at mostn steps, wheren is the dimension
of the underlying vector space, i.e. the number of unknowns.

An algorithm in pseudo-code of the preconditioned (section 2.3.4) CG-Method can be found in
figure 4. The (unpreconditioned) CG-Method is the special case of the precondition matrixM

being the identity-matrix. Note that the residualr is updated using a recursive formula, which
might lead to accumulation of floating-point inaccuracies. Thereforer should be recomputed
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Given the inputsA, b, an initial guessx, a preconditionerM , a maximum number of iterationsimax and an error tolerance" < 1.

A is a matrix;M�1 a (possibly implicitly defined) matrix;b, d, r, q andx are vectors;�, �, �
old

, �new , �0 and" are scalars;i, imax are integers.

i := 0
r := b�Ax

d := M�1r

�new := rTd

�0 := �new

while i < imax and�new > "2�0 do
q := Ad

� := �new
dT q

x := x+ �d

r := r � �q

s := M�1r

�old := �new
�new := rT s

� := �new
�old

d := s+ �d

i := i+ 1
end while

Figure 4: Pseudo-code for the CG-Method

regularly using its definitionr = b�Ax. It should be definitely recomputed before the algorithm
stops to avoid early termination with the real residual not yet being small enough.

2.3.2 CG on normal equations

If A is not symmetric or not positive definite, butAT is available a simple method to solve
Ax = b is to solve the linear systemATAx = AT b using the CG-Method. Remember that
ATA is symmetric and positive semidefinite. MoreoverATA is positive definite ifA is non-
singular (i.e. ifA�1 does exist).ATA need not be calculated as multiplication of a vector with
ATA can be calculated as two successive multiplications withA andAT . Therefore one step in
this method involvestwomatrix-vector multiplications.

Because of this increased cost and the fact thatATA for symmetric and positive definiteA in
general has less favourable properties thanA, the CG-method should be prefered for symmetric
and positive definiteA.

2.3.3 Initial guess and stopping criteria

The CG-Method, as with most iterative methods, requires an initial guess to start the computa-
tions. A criterion also has to be selected to decide when there is a sufficiently accurate solution;
at this point the computation is halted.

As a physical problem is being considered the values ofx andb only have some meaning when
read in certain units. Therefore, an initial guess and stopping criterion should be independent of
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rescaling, i.e. change of the units they are measured in.

As initial guessx(0) = 0 was chosen and the stopping criteria is an improvement of the norm of
the residual of a factor" compared with those of the initial guess. As the residual of the initial
guess0 is�b this criterion has some reasonable relation to the scale of the actual problem. The
value of the factor" determines the precision required and can be changed by the user. As, of
course, not the norm but its square is the value used in the actual computation,"2 should be not
less than the accuracy of the floating-point-arithmetic used. Values of10�5 : : : 10�7 have been
found appropiate.

When using a preconditioner (see section 2.3.4) theM�1–norm is taken instead of the norm,
whereM�1 is the preconditioning-factor. This assumes thatM�1 is symmetric and positive
definite. If this is not the case the overhead of an additional inner product to calculate the
euclidian norm should be accepted.

2.3.4 Preconditioning

As the convergence rate of iterative methods depends on spectral properties of the coefficient
matrixA, one may attempt to transform the linear system into one that has the same solution,
but more favourable spectral properties.

An idea would be to solve the systemM�1Ax = M�1b, whereM is a nonsingular matrix
that (in some sense) approximatesA but that multiplication with its inverse is easier to calculate
(M�1 need not be calculated).

For CG, however, the problem occurs thatM�1A need not be symmetric and positive definite,
even ifA andM are. Therefore the problemE�1AE�T ~x = E�1b; ~x = ETx is solved with
E being some matrix withEET = M . Using careful variable substitutions [10] one can avoid
calculatingE explicitly as the algorithm in figure 4 shows.

The preconditioners described below were implemented. A wider discussion of preconditioning
and other preconditioners can be found in [2].

Jacobi-preconditioner. The “jacobi” or “diagnoal” preconditioner approximates the matrixA

by its diagonal entries, i.e. ifA = (aij)ij , thenM = (aij�ij)ij andM�1 =

0
BB@

a�111
. ..

a�1nn

1
CCA.

So all the information to multiply a vector withM�1 can in principal be found looking atA.
However, depending on the way of matrix-storage it might be easier to have the vector(a�1ii )i
stored separately. The same is true for many preconditioners that can be found in literature [1, 2].
Although, easy to implement and easy to parallelise this preconditioner only results in modest
increases in convergence rate.

ILU(0)-Preconditioner. A much more effective preconditioner is the so-calledILU(0)–
Preconditioner. IfA = L + D + U , whereL, D andU are the lower, diagonal and upper
part of the matrix, then the preconditioner is defined [1] asM = (D + L)D�1(D + U). It is,
M�1 = (D+U)�1D(D+L)�1. AsD+U andD+L are both triagonal matrices, multiplying
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a vectorx with M�1 can be done solving thesimplelinear systemMy = x (M�1 is never ac-
tually computed!). However this processes involes a lot of small loops that have to be executed
sequentially; therefore parallelisation it difficult.

3 Approach to parallelisation

3.1 Overview over thethermique Code

The code, related to the “Connect Project” [5] and provided by the HPCI Rho consortium orig-
inally consisted of14 files of code, additional files forcommon–blocks and aMakefile ; it
was written inFortran 77 , only minor parts are written inC.

As the guidef90 knows most extensions ofFortran 77 , the code could relativly easy
be adapted to theE3500 . Some minor problems occured due to differences between the
Fortran 77 compiler originally used and the newFortran 90 standard, such as the im-
plicit saved attribute supported by manyFortran 77 compilers.

As the program is inteded to run as a batch job, the graphical output using X-Windows had to be
removed. As the data necessary to generate the graphics is written into outputfiles the graphics
could be generated by a separate program. The code added to implement the CG was written
into separate files and theC programming language was choosen. When modifing or adding
new Fortran codeimplicit(none) andintent –declarations ofFortran 90 were used
wherever possible.

The computational part of the code can be splitted into the3 main parts which are typical of a
FE-code: the mesh-generation section, the matrix-assembly and the solver. This, however, does
not precisely reflect the actual subroutine structure of the code, as preparations for the solving
process were also calculated in the routine generating the matrix. During this project the mesh
generation and the solver-routines were actually split into different programs to make reusing
meshes more easy and to (in principle) be able to develop these parts independent of each other.

3.2 Analysis of the Code

As the code was provided by a third party the first step was to anlyse the code in order to know
which parts of the code are the computational heavy ones and how these can be parallelised.
Several methods have been used.

3.2.1 Timing by Instrumenting code

As a simple device to find out which parts of the code are computationally the most important,
timing commands where inserted directly at the relevant positions in the code. This allows
timing with an acceptable overhead. As the real-time-clock was used, functions likeetime and
dtime measure the CPU-time, i.e. they time all threads together spend in a function, making
these routines worthless to measure the effects of parallelisations.
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To avoid changing the code permanently and potentially making it less useful for other users,
timing commands are compiled conditionally depending on preprocessor1 flags.

3.2.2 Analysing the runflow usingtcov

Parallelising loops that do not have enough iterations will result in slowdown due to the addi-
tional overhead rather than speedup due to parallelisation, it is important to get a feeling for the
average number of iterations in a loop.

tcov provides a simple method for analysing the runflow of a program. Using special compiler
flags (-xprofile=tcov )2 the program outputs, after every run enough information to find
out how often each line of code is executed. Astcov works only on serial code a compiler
ignoring !$OMP–lines has to be used if a program is to be analysed that is already partially
parallelised.

3.2.3 Measuring the time spent in different functions usingprof

prof is another profiling tool, instrumenting the code at compile time. It is supported by most
compilers, includingguidef90 . Using the-p Option of the compiler, the program writes
a file (usuallymon.out ) containing enough information to find out the time spent in each
function call and the number of times that a function is called. Note, that the times reported do
not include the time spent in called subroutines.

Usingprof for parallel programs seemed to introduce a non-acceptable overhead and results
difficult to interpret. Therefore using prof was only used on serial code.

3.3 Mesh generation section

Delaunay triangulation is used for mesh generation but due to project time constraints this was
only partially parallelised. About half of the (serial) time spent in the mesh generation section is
spent in other calculations, such as smoothing the mesh, testing whether two points are too close
to one another and improving the numbering of the elements (to make sure that the non-zero
elements of the resulting linear equation are as close to the diagonal as possible). Several of
those tasks could easily be parallelised.

Although parallel smoothing of a mesh is possible (e.g. every processor smoothes a separate
area of the mesh) this might result in slightly different meshes. Therefore, the smoothing has
not been parallelised but could be a subject for further is investigations.

3.4 Matrix assembly

To generate the global stiffness matrix the elemental equations have to be calculated and then
added at the correct position within the global matrix.

1Although the code is written in Fortran, thecpp , i.e. the “C Preprocessor”. This decision was taken because of
the lack of a standard preprocessor for the Fortran language, whereas thecpp can be considered installed on every
Unix system.

2According to theman–page there should be also an “old style” way of usingtcov via the-a flag.
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The calculation of the elemental equations are completely independent but the assembly is not.
Therefore the program was changed so that first, all of the elemental equations are calculated and
then they are added to the global matrix afterwards. The calculation of the elemental equations
was parallelised by assigning each thread the same number of elements. The assembly of the
global matrix was left serial.

Note, that as each entry of the global matrix is only sum of very few entries, a reduction over
the whole matrix would be to expensive. If atomic had been implemented properly (see sec-
tion 6.2.4) this might be an alternative. Another alternative might be using domain decompo-
sition techniques [11] to be able to assign every thread a part of the global matrix that can be
handled without looping through all the elements i.e. rearrange the order of the elements in a
clever fashion to minimise dependency between threads.

4 Iterative methods and parallelisation

As the model is still an area of research it was not clear which numerical properties the actual
system of linear equations will eventually have. Therefore the question which iterative method
and which implementation might be the best used cannot yet be answered definitely. However,
the way the matrix is stored might significantly affect the time needed to solve the system of
linear equations and the scalability when using several processors (as only8 processors could
be used at the moment this could not be tested completely either).

Therefore, to be as flexible as possible a header-file was used as an interface to matrix operations
in order to develop matrix-storage and iterative methods independently.

4.1 Matrix storage

To investigate code parallelisation withOpenMPtwo ways of storing sparse matrices have
been implemented. There are more ways of storing a matrix than those explained here. For an
overview of different ways of storing sparse matrices see [1].

4.1.1 Skyline-storage

In the code the matrix was stored in “skyline” format. Therefore, choosing this form of storage
has the advantage that no transformation of the matrix has to be calculated. On the other hand
parallelisation of matrix-vector-products based on this form of matrix storage is expected not to
scale that good for large numbers of processors (which could not be tested, as only8 processors
have been available).

Skyline storage exploits the fact that the matrix is symmetric and therefore only the upper tri-
angular part has to be stored. Moreover, using a good FE numbering scheme the matrix has all
its non-zero coefficients near the main diagonal. Therefore, for each column only the elements
from the diagonal up to the first non-zero element in this column are stored. All these “skyline-
towers” are then stored in a single array and a second array is used to store pointers to diagonal
entries in the original matrix. Figure 5 illustrates the prinicipale of skyline-storage.

Calculating the rows of the stored information is not that easy. The parallelisation was achieved
by assigning each thread the same number of skyline-towers. As illustrated in figure 6, this
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Figure 5: Skyline-Storage of a sparse symmetric matrix
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Figure 6: Parallel multiplication of a matrix in skyline storage and a vector

produces partially overlapping results that have to be added. For simplicity each thread had its
own array the size of the complete vector and the results over the whole vector have been added,
introducing an overhead similar to a serial part of code3. Further optimisation is possible by
adding only the regions where non-zero entries results of each thread will fall. These regions
can be determined by finding out the height of the largest skyline-tower4. However the time to
implement this improvement was not available.

It should be noted that it is not a possible to get reasonable speedup when synchronising the
access to the overlapping regions usingatomic statements, see section 6.2.4 for more details.

4.1.2 Line-based way of storage

Also, another way of storing the main matrix was implemented. The overhead of this transfor-
mation is ignored in future discussions.

To make the CG code more general no use was made of the fact, that the matrix was symmetric,
but each non-diagonal entry was in fact stored twice. This allowed to access all the relevant

3Although being executed in parallel the reduction loop is considered a sequential one, as the amount of work for
this loop is proportional to the number of threads executing this function. The loop initialising all the result-vectors
with 0 is really a serial loop, aseverythread has to execute this loop on itsown copy of data. Finally it should
be noted that the overhead can be even worse if the relevant data does not fit in cache, as on most shared memory
machines all main-memory accesses are serialised.

4As the matrix does not change during the CG computation this value has to be determined onlyonceand can
be used forall the multiplication within the CG. Moreover, as in the program the CG has to be applied to lots of
different matrices all having the same shape, this value can even be reused more often.
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Figure 7: Line-based storage of a sparse symmetric matrix

entries in a line of the matrix in a linear way. To benefit from the fact that the matrix is sparse,
only the non-zero entries where stored. The complete data structure therefore looked as follows:

� The entries of the matrix where stored in a one-dimensional array of one-dimensional
arrays, not necessarly of the same length. Each entry of this array represents a line of
the matrix storing the entries beginning with the first non-zero entrie ending with the last
non-zero entry.

� A vector of the indices of the columns containing the first non-zero entry of each line,
asuming the first column is column number0.

� A vector of the columnsfollowing the columns containing the last non-zero entry of each
line.

Obviously the way of numbering the indices in the vectors discribing the shape of the matrix was
choosen to best fitC for-loops and the wayC numbers the entries of arrays. Figure 7 illustrates
this storage principle.

Parallelising matrix-vector multiplication with a matrix stored in this format is done in the ob-
vious way by assigning each thread a set of lines it is responsible for. Therefore, multiplication
involves no communication at all. To reduce communication to a minimum the same static
scheduling scheme was choosen for all vector and matrix-vector operations5.

An analysis of the code shows that only once per iteration a vector has to be passed between the
different threads. Moreover, this communication can be reduced to some form of nearest neigh-
bours communication if using a static block schedule for distributing the lines to the different
threads. Therefore this form of parallelisation can also be used on distributed memory machines
and simply be rewritten using message passing6.

4.2 Inner products and vector sums

Inner productsxT y and vector sumsx + y are obvious to parallelise as all the calculations
(xi � yi resp.xi + yi) are completely independent. Of course, a reduction is necessary for the
inner product.

When parallelising these utility functions one should try to reduce communication by assigning
each thread the same lines of the matrix every time. Therefore the way of distributing the work

5This assumes, that all threads keep living all the time, which is possible asOpenMPsupports orphaned directives.
6This, would include an extra step to distribute the data and find out, with which neighbour communication is

necessary, as this depends on the exact shape of the matrix. The last step is not necessary inOpenMP, as communi-
cation is asymmetric: every thread only needs to know, which data it needs; it is not necessary to know who needs
the data a thread has just calculated.
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Number of elements 159 756 24 247 10 088 2 406

No precond. 528 211 140 66
Jacobi 509 201 132 62
ILU(0) 189 79 53 26

Table 1: The number of iterations needed for the CG-Method, depending on the mesh size and
the preconditioner choosen

in this functions has to be choosen according to the way the matrix-vector multiplications are
parallelised7.

To fullfill this requirement all parallelised loops over the rows of a vector/matrix use a prepro-
cessor macro that expands to the same schedule every time. Note, that this of course, will work
with static schedules only.

5 Results

The serial code using skyline storage was run for different mesh sizes with the two precondi-
tioners. Timings are for the stationary solution since this will require more CG iterations to find
a solution. For all timings, timers as discribed in section 3.2.1 have been used.

The parallel version was run with different combinations of threads, mesh sizes and matrix
storage methods. Timings were made for the main compuational sections of the code i.e. the
matrix assembly and CG solver routines.

5.1 Preconditioner

Table 1 slows the the number of iterations required for convergence for the two preconditioners
and with none. Skyline storage is used. It can be observed that the Jacobi preconditioning
produces a very small reduction in the number of iterations while theILU(0) preconditioner
reduces the number of iterations by an average of63%.

However, comparison of the overall CPU time required for convergence is significantly dif-
ferent. The Jacobi preconditioner adds little extra computation and typically the overall time
needed is reduced by3%. By contrast, theILU(0) preconditioner produces significant extra
computation which uses more time than that saved by the reduction in the iterations. Moreover
this preconditioner has not been parallelised, so the total time on8 processors could be up to6:5
times greater than that with no preconditioner.

5.2 CG

Figure 8 show the speedup of CG using skyline-storage and line-based storage on a mesh with
159756 elements. It can be observed that both show linear speedup using up four processors.
For more processors line-based storage indicates better scaling potential.

7Of course this applies only, if the matrix-vector multiplication doesn’t involve reduction over the resulting vector,
as it does for example when the skyline storage is used. In this case the parallelisation for this part can be choosen
more or less arbitrary.
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Figure 8: Speedup of CG using skyline-storage and line-based storage using Jacobi precondi-
tioning

Figure 9 shows the time spent in the CG(skyline storage) depending on the number of threads
using different mesh sizes. It can be seen that the algorithm scales well independent of the
problem size.

5.3 Matrix Assembly

Figure 10 shows the speedup for calculating the elemental equations for159756 elements pro-
ducing 23723788 “entries”8 in the skyline matrix. The speedup is not perfect although the
calculations are completely independent. There is no load imbalance and there are no synchro-
nisations required. There may be several reasons for this behaviour. The excessive memory
accesses might have introduced system synchronisations or the system is interfering somehow
and the computation was not obtaining all the processor time. However, this is an area for fur-
ther investigation. Furthermore, it should be noted, that this is not the most important problem
with the chosen method of parallelisation. It can be seen from figure 11 that the time for the
non-parallelised part becomes more relevant as the number of processors increases. This figure
shows the total time spent in this subroutine (upper line) and the time spend in the unparallelised
part adding up the elemental equations (lower line).

6 Conclusion

As OpenMPis a relativly new standard (1997) experiences using this approach to parallelisation
might be useful for other programmers. This section gives an overview of experiences gained
during this project that could be considered interesting for others.

8Including the zero-entries over the diagonal with non-zero entries above it
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Figure 10: Speedup for calculating the elemental equations
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6.1 UsingOpenMP

As OpenMPprovides an easy way to parallelise the most common structures in typical numer-
ical applications (such asdo–loops), the main work is not to code, but to analyse the structure
of the code. This might be much easier for someone familiar with his/her code, so it is sug-
gested that while developing the serial code one should already start adding more or less formal
comments about the parallel structure of certain loops. As serial compilers ignore theOpenMP
directives these comments would not effect serial code development.

However, programs cannot always be parallelised by just adding directives. Often the structure
of the program has to be changed (see sections 3.4 and 4.1.1 for examples). When writing new
code forOpenMPthis should be considered from the start.

OpenMPacts as a preprocessor on the code and debugging parallel code is quiet difficult as the
preprocessed code looks different from the original code or is not available (as in the case of the
guidec ). When usingFortran it should be noticed thatprivate variables are unitialised,
while manyFortran compiler support initialising all variables with0. As variables that are
already initialised in the program are not initialised when being declaredprivate on opening a
newparallel construct, running the code serial and parallel with1 thread isnotequivialent.

6.2 Synchronisation inOpenMP

In the parallel model based on message passing (such aspvm, MPI, . . . ) communication is
the main overhead introduced. This overhead in made quiet explicit due to the calls of the
communication functions. InOpenMP[7, 8] communication is done implicitly.

HoweverOpenMPdoesintroduce an overhead. The best way to think of is thinking in syn-
chronisation events as expensive operations. As the typical communication inOpenMPis of the
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form “one thread writes to a shared variable; barrier; the other thread reads the shared variable”
the overhead is still related to the communication between processes. Therefore, the number of
synchronisation events is a good measure for the overhead introduced.

6.2.1 Implicit barrier at the end of a for -loop

Most of the barriers in a typicalOpenMP-program are the implicit barriers at the end of afor -
loop. Therefore, before parallelising the loop one should ask oneself whether the overhead of
an additional barrier is won back by the parallelisation. As a rule of thumb, it was found that
the effort of an additional barrier is only worth the effort, if the loop contains the amount of
work equivivalent to at least several hundred multiplications. Here one should remember that
all main-memory accesses are serial on most shared memory machines. Therefore, parallelising
copy/initialisation/. . . –operations is only worth it if a valid copy is already in cache or the cached
value can be used immediatly afterwards.

When writing your own code one normally has an intuition of number of iterations spent in a
loop and one can try to make the largest loop the outermost. Parallelising someone elses code is
more difficult as one has to analyse how big the loops are and whether they can be parallelised
or not. For analysing the typical size of a looptcov (see section 3.2.2) was found to be a useful
tool.

6.2.2 False sharing

As the units for cache coherency are usually larger than typical array entries like floating-point
numbers, accessing different entries of the same array that are close together can force the
system to keep these accesses coherent, even if in theory this is not necessary.

The best way to avoid this is using sufficently large chunck-sizes with the different schedules.
However, one should be aware of the fact that there is no proper way to force allignment of
arrays according to the synchronisation units of cache. Therefore false sharing effects could be
observed even with chunk sizes larger than the actual synchronisation units. Block schedules
have been found the best way to minimise these problems.

6.2.3 Synchronisation between threads on the same processor

If there is more than one thread on a processor the threads are scheduled by the operating sys-
tems. As the scheduling intervals are quite long compared with the actual cost of a barrier
event and the system seems to use spin-lock mechanisms this can result in an unexpected high
overhead.

Figure 12 shows the total time for solving a linear equations using the CG-Method on a simple
set of data versus the number of threads used. One can clearly see the increase in the CPU time
once the number of threads becomes greater than8, which is the number of processors on the
machine. Using16 threads one again would expect perfect load balance.

The same effect is likely to occur when the machine has to be shared with other processes.
Therefore testing the effects of parallelisation should only be done using a machine exclusively
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Figure 12: Time versus number of threads of a parallel implementation of the CG-Method on a
machine with 8 processors

and when actually running the parallised code one should make sure that the total number of
threads on the machine does not exceed the total number of processors.

6.2.4 atomic commands

When applied to a elements of an array they seem to lock the whole array and not only the
relevant element — or even worse it seems to follow the suggestion of the specification and
replaced it by acritical command. This effect could be seen when the access to different
entries of a global array (see, e.g. section 4.1.1) did not scale and even became slower due to the
increasing overhead. Even with only1 thread the overhead wasnot aceptable.

It should be noticed that in this point the specification [7, 8] is inconsistent, as on the one hand
it says thatatomic guarantees the update of the variable to be atomic and on the otherhand it
says that it is a correct implementation to replace it by acritical -section9.
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