epcc] N~

o -

EPCC-5599-02

Parallel Rasterisation for GIS

Thomas Ashby

Abstract

Geographic Information Systems are growing in their need for computing power. The
manipulation of very large volatile datasets with increasingly complex operations is an
obvious choice for high performance parallel computing. This report looks at a parallel
implementation of vector to raster conversion for BSi NTF level 4 records.

PN
il

EPCC-S599-02 2

1 Introduction

This report is based on work done for the Edinburgh Parallel Computing Centre accomplished
over a ten week period that started on the 12th of July, 1999. The initial one and a half weeks
were spent on training courses concerned with the theory and application of parallel computing,
and the remainder of the time was spent on the project for the parallel conversion of BSi NTF
level four vector information to a raster form for a GIS.

The background section gives some information regarding the role and development of Geo-
graphical Information Systems (GIS), and why high performance parallel computing is needed
to meet the demands of modern GIS applications. It also details the history of the wider project,
to which my SSP project is a fairly minor addition.

The project description section gives an account of how the work done and problems encoun-
tered during the course of the project. It is broken up into further relevant subsections.

The timings section documents various test conducted on EPCC machines and the results ob-
tained

The conclusion discusses the results from the timing section and looks at the work left to do.

2 Background

2.1 GIS’s and their role

Crudely speaking, GIS’s are electronic maps - a marriage of Computer Assisted Cartography and
a database. However, unlike traditional maps, data storage and data presentation are inherently
separate in a GIS. The upshot of this is that GIS’s are more flexible than maps, which are static
and tend to compromise to be of use in a wide range of purposes. A more thorough definition
gleaned from [1] defines them as computer systems for the:

e acquisition and verification

compilation

e storage

¢ updating and changing

e management and exchange
e Mmanipulation

¢ retrieval and presentation

e analysis and combination

of geographic data. Geographic data is defined as “information on the qualities of and the
relationships between objects which are uniquely georeferenced”.

The roles of GIS’s are many fold. For example, spatial analysis and associated information
on traffic flow could be used to calculate the shortest or quickest driving route between two
destinations. Information from disparate databases can be combined to assist decision making,

EPCC-S599-02 3

such as balancing the need for conservation against the need for extra housing development. In
emergency situations such as potential widespread flooding, calculations could be made using a
GIS to identify the most pertinent areas to evacuate first.

2.2 GIS’s and parallel computing

The field of GIS’s is beginning to realize its potential with an increasing level of interest from
across the board of academic and commercial application. Unfortunately, just at this crucial
point the endeavour is in danger of being sunk by its own success. The amount of data being
made available by GIS’s and remote satellite sensing is such that it can barely be stored, let alone
subjected to any sort of useful analysis. Although recent leaps in computer performance have
been impressive, the increase in power is no match foreyg@irementor power, especially in

the more exploratory, interactive or combinatorially explosive kinds of analytical operation.

On top of this, the prospect of really widespread commercial applications such as services pro-
vided over the Internet and tourist information systems, and the handling of very large and
highly dynamic datasets, is approaching rapidly. Current demand for fairly simple world wide
web search queries has resulted in the need for very powerful multiprocessor search engines
- handling complex GIS requests at this sort of rate would require massive computing power.
Real-time GIS’s would require sub-second response times to cope with the volatility of their
data, yet another reason to seek a solution to the obstacle of very high volume data throughput.

This is where parallel computing enters the fray. The promise of general purpose parallel com-
puting to handle computationally intensive operations on large amounts of data is potentially
the solution to the dearth of computing horsepower currently plaguing GIS’s. Until recently
the cost of redesigning software to run on parallel machines and their tendency to concentrate
on managing computationally intensive jobs rather than data throughput has deterred the GIS
community from wholeheartedly embracing the technology, but this is how changing.

2.3 The project so far
2.3.1 History

The program has its roots in a large research project conducted at the University of Edinburgh

and funded by the Department of Trade and Industry and SERC, along with several industrial

partners.

It is currently being conducted as a collaboration between the GIS Parallel Architectures Labo-

ratory within the Department of Geography at Edinburgh University, and EPCC.

The SSP project is an extension to the project proper, and uses various modules from it as a
foundation.

2.3.2 Structure

There are three main tasks to be handled by the program:

¢ Raster to vector (R2V) conversion

¢ Vector polygon overlay

EPCC-S599-02 4

¢ Vector to raster (V2R) conversion

The code is modularised to facilitate re-use (see fig 1).

Vector dataset 2
(PO only)

Raster dataset \\\

R2V operation

Figure 1: Modular decomposition of code

As can be seen, vector to raster conversion utilises the vector input, rasterisation and raster
output modules.

2.3.3 \Vector input module

The vector input module takes as input BSi NTF level 4 data sets. It outputs sets of geometry
records with their associated left and right attribute values in groups containing all the descrip-
tors present in a horizontal strip of varying height, sorted by their uppermost y co-ordinate (see
fig 2). It executes this process in three stagest, JoinandGeom Attribute Distribution (GAD)

SORT During both the Sort and Join phases, there is one source process and two or more
pool processes. The source process co-ordinates the actions of the pool processes, and, during

EPCC-S599-02 5

Unsorted NTF data

e

(-]
Geot axs
erge records to
produce the left and
right attribute values

for\each Geometry [-—
record Geol Maxs
Sfer Geometry anfl associate
left/right attribute valyes for a regioh to
a parallel process tofcomplete
GIS operation.

§\\M

a il

Decompose the geographical
area into regions of
comparable workload

Figure 2: Graphical depiction of Sort, Join and GAD

the Sort phase, gathers information on the distribution of the data over the space of interest.
The output from the Sort phase is various temporary files containing the processed and sorted
contents of the necessary records.

JOIN During the Join phase, the majority of the output from the Sort phase is merged in

two stages to produce GeomValueYMax records. These records contain geom Id’s with their
left and right attribute values, and y max and y min values, sorted by uppermost y coordinate
(GeomValueYMax records).

GAD At the start of the GAD phase, the pool processes split into two groups, each containing
one or more processes (see fig 3). Processes in the first group are called Geom Attribute Servers
(GAServers), and those in the second are called workers. Control of worker processes is then

EPCC-S599-02 6

given over to an outside operation (i.e. vector polygon overlay or rasterisation), which can call
elements of GAD worker functionality to interact with the GAServers and the source process.
This interaction consists of sending a message to the source process to indicate how much work
a worker can accommodate (restricted by memory considerations etc.). The source process then
replies by issuing &trip descriptor message, detailing the vertical extents of the horizontal
strip to be assigned to the worker. The source process constructs the strip by starting where the
previous one finished, and incrementing the y range downwards by the sizeioif @artition

iteratively until the range contains a close as possible to the maximum amount of work permis-
sible for the worker.

Sort/Join process configuration GAD process configuration

Source
process

)

GeomAttributeServer
processes

Source
process

Worker processes

Figure 3: Splitting of processes

When the GAServers receive the strip descriptor, they send any geoms and geom values they
own in that range to the worker in question, after prompting the worker with a message telling

it how many of each type to expect. GAD worker functionality executed on the worker process
then does the final sort and join to enable it hand geoms joined with their left/right attribute
values sorted by their maximum y co-ordinate to the parallel GIS operation in charge of the
worker. The information is passed by calls to a function that fetgbes descriptorstructures

one at a time in order.

3 Project Description

3.1 Rasterisation Methods

Methods of rasterising vector data exist essentially in a continuum from frame buffer to scan-
line algorithms. The continuum starts with frame buffer algorithms where the whole area is held
in memory at once. It then proceeds on a sliding scale of dividing the area into smaller strips

EPCC-S599-02 7

and rendering each strip separately with a frame buffer style algorithm until the area is a single
raster line, which is the scan line algorithm.

Frame buffer algorithms For this method the whole raster image must be held in memory at
once. Vectors are drawn according to any standard method, and can then be discarded. Once all
the vectors have been drawn, either a seed fill or parity fill algorithm can be used to fill in the
resulting polygons. As well as requiring the whole image to be held in memory, frame buffer
algorithms are less accurate as they discard the vectors immediately after drawing, and so leave
any given pixel with the value of the last vector that intersected it, in the case of a disputed pixel.

Scan line algorithms Scan line algorithms require the input to be sorted by the uppermost y
co-ordinate. Before rasterising a given horizontal line, an active edge listis set up denoting edges
to be rendered. The active edge list is updated before moving on to the next line by removing
edges that have terminated and adding new edges etc. The input is sorted to ease the adding
of new edges. The head of the input edge list is interrogated, and if it starts below the current
raster line, all the following edges are guaranteed to start below the line as well (assuming we
are rasterising an area from top to bottom). Contested pixels can be more accurately rendered
with scan line algorithms, as it is less effort for the algorithm to have all the edges present in a
pixel before it has to render it, due to memory considerations. It can then use one of a number
of decision procedures to resolve the conflict.

As the input to the worker stage is already sorted by maximum y coordinate, and the datasets
are expected to be very large, the design specified implementing a scan line algorithm.

3.2 Rasterisation Worker

An overview of the worker function hierarchy is given below:

RasteriseWorker
Rasterise
RasteriseStrip
RasteriseMethodWrapper
UpdateSegmentList
GatherContinuations
BuildSegment
InsertinASL
RemoveFromASL
CompareSegments (witfsor)
RasteriseLine
CalcPixAreas
CompareClipSegments (witfsor)
Comparelntersections (witsor)
SimulateSegments

EPCC-S599-02 8

3.2.1 RasteriseWorker

This function is responsible for transmitting to the source a message detailing how much work

it can take on, and receiving the strip descriptor from the source and the relevant geom records
and geom value records. The reception of the records takes place in two stages. Initially a size
message is received from each GAServer, then a message of the relevant size is received. The
function then checks to see that the correct number of records have been received for the strip,
and passes the records to Rasterise.

3.2.2 Rasterise

Rasterise calls various pieces of GAD worker functionality to turn the messages into parcels,
from which geom descriptors can be retrieved.

3.2.3 RasteriseStrip

Once the geom descriptors have been prepared, the rasterisation of the strip can begin. Ras-
teriseStrip prepares the structure for the active segment list and gets the first geom descriptor
- this is necessary in case there is any blank space at the top of the strip to be rasterised. Af-
ter calculating how high in cells the strip is, the function calls UpdateSegmentList followed by
RasteriseLine for each line in the strip. To finish, the output atom must be flushed and closed,
although file handling has yet to be finalised.

3.2.4 RasteriseMethodWrapper

This function is local to the rasterise.c file and allows the worker to pick up the rasterisation
method stored by the source process. This should really be put into the V2R args in the applica-
tion args, as | am not certain that this call will work when run on non-shared memory machines
(i.e. when rasterise source and rasterise pool are on totally different private memory blocks).

3.2.5 UpdateSegmentList

UpdateSegmentList updates the active segment list (ASL), a structure with pointers to the head
and the tail of a doubly linked list of segments. Two pointers are used to enable the merge sort
of the new segments from new geom descriptors to be conducted in the manner proposed in
the original pseudo-code. This could probably be changed to a single pointer list, and it may

even be advisable to do so as merge sorting from the left of the list or some random point in the

middle may be more efficient.

The function completes the following jobs in order:

¢ Removes 'dead’ segments from the list (i.e. segments that are no longer active on the
current raster line).

e Checks for and constructs recursively continuations of any segments that finish on this
raster line.

EPCC-S599-02 9

¢ If the segment finishes and has no continuations, call GAD functionality to destroy the
geom descriptor.

¢ Updates the x-extents for each segment in the ASL.

¢ Updates the x-extents for each segment that was new last time, as this will be a special
case.

e Checks the position in the ASL of each segment that was new last time, as they may need
to be moved (see [4]).

e Checks to see whether the next geom descriptor becomes active on this line, and con-
structs its first segment if it does. Checks for continuations if the first segment stops on
this line.

¢ Quicksorts new segments from new geom descriptors.
¢ Mergesorts all new segments with the ASL.

The new segment table (NST) is contiguous in memory to allow the portion of it that gets filled
with new segments from new geoms to be quick-sorted with a call to the library routine 'qsort’,
and to ease the operations on segments that were new last time.

The calculation of x-extents should probably be moved out into an individual function to aid
the clarity of the code. Having only event point data and the original geoms was looked at as a
redesign option, but the amount of extra sorting that would be involved meant that any memory
conserving benefits would be outweighed.

3.2.6 InsertinASL and RemoveFromASL

This pair of simple functions deals with the pointer stitching required to add and remove seg-
ments from the ASL. InsertinASL can take a number of segments contiguous in memory to
avoid the overhead of repeated function calls when doing the merge sort. It uses the 'parent’
member of a segment as the starting place of the search for the insertion point.

3.2.7 BuildSegment

BuildSegment extracts the information from a geom descriptor to initialise a new segment in the
NST. It also hands the calls to realloc should the NST table array be too small/large.

3.2.8 CompareSegments

This function is called by gsort to enable the sorting of the new segments from new geoms. It
stands currently as it did in the original design, but this doesn'’t take into account the vertical
positions of the segments if they have identical left x-extents, and so may need changing.

The code for the functions above is detailed in the appendix. Unfortunately the following func-
tions were not fleshed out, as more time was spent debugging the completed functions above
than was expected.

EPCC-SS599-02 10

3.2.9 RasteriseLine

RasteriseLine uses the ASL constructed by UpdateSegmentList to decide on the attribute values
for each pixel in a given raster line. Pixels are rasterised with one of 5 methods:

Arbitrary The pixels take the attribute value of the face to the west of the first segment, and
any subsequent segments that occur in the range of the segment are discarded. Transitions after
the segment finishes (and no others are active) are filled with the east value until a new segment
becomes active.

Priority Pixels are rendered with the highest value attribute present in them. Ranges can
be filled until a new segment becomes active or the current highest priority segment becomes
inactive. Transitions are filled similarly to the Arbitrary method.

Area Methods For the following methods, each pixel (that is not part of a transition) is con-
sidered individually by calling 'CalculatePixAreas’ to get the area of each attribute polygon in
a contested pixel.

e Attribute Area : The pixel is rendered with the attribute that has the greatest summed
area of the polygons present.

¢ Weighted Attribute Area: Similar to Attribute Area, except that the area of an attribute is
multiplied by its weight, supplied by the second value in the Geom2ValuesYMax records.

e Polygon Area With this method, a pixel is rendered with the value of the largest single
polygon present.

3.2.10 CalculatePixAreas, SimulateSegments, CompareClipSegments and Compareln-
tersections

CalculatePixAreas is called by RasteriseLine when using one of the area methods for disputed
pixels. It calls the remaining three functions for various sorting and calculation purposes.

4 Timings

In addition to implementing some of the rasterisation functionality, a number of timing tests for
the Sort, Join and GAD stages were conducted. Although Sort and Join had been tested before,
they had not been tested on the resources mentioned, and so it was deemed worthwhile to obtain
some results.

The first and most comprehensive batch of tests involved timing the program through the Sort,
Join and GAD phases, up to where the workers receive all data contained in all the strips. The
program was tested with a number of processes on various different machines. The dataset used
was a small example made up of 60 mini-partitions, which contained a face with a hole in (i.e.
two polygons), and was approximately 1287 bytes in size. The second test involved running

EPCC-SS599-02 11

the program through the same phases on the same dataset as the first, but also timing the action
of UpdateSegmentList on the first strip descriptor as well (unfortunately testing further strip
descriptors was not possible - this explains the very quick timings for the results).

It was initially hoped to be able to use larger datasets to investigate the scalability of the code,
but this proved unworkable in the time given.

Machines Below is a brief description of the resources used to run the tests:
e Amber Sun Ultra 10, with 1 Gb of memory and a 300MHz ULTRASparc processor

e Lomond front end Sun Enterprise 3000, with 1 Gb shared memory and 4 x 250 MHz
ULTRASparc processors

e Lomond back end Sun Enterprise 3500, with 8 Gb shared memory and 8 x 400 MHz
ULTRASparcll processors (sdutp://www.epcc.ed.ac.uk/sun

e Work Station cluster Six Sun IPX Work Stations, run as a parallel machine across the
network (sedttp://www.epcc.ed.ac.uk/sun

4.1 Results

Machine: Amber

Number of Processes | Sort Time | Join time | GAD Time - Source
(seconds)| (seconds) (seconds)

3 (1 server, 1 worker) | 6.20 1.97 1.309

4 (1 server, 2 workers)| 7.58 4.19 2.039

5 (2 servers, 2 workers)) 8.88 4.54 3.439

6 (2 servers, 3 workers]) 9.91 5.11 4.155

Average time for call to UpdateSegmentList on first strip descriptor = 0.0000078 seconds

Machine: Lomond front end

Number of Processes | Sort Time | Join time | GAD Time - Source
(seconds)| (seconds) (seconds)

3 (1 server, 1 worker) | 1.14 0.50 0.016

4 (1 server, 2 workers)| 0.95 0.37 0.080

5 (2 servers, 2 workers)) 1.55 1.47 0.400

6 (2 servers, 3 workers)) 2.85 1.94 0.959

Average time for call to UpdateSegmentList on first strip descriptor = 0.0000083

Machine: Lomond back end

EPCC-SS99-02 12
Number of Processes | Sort Time | Join time | GAD Time - Source
(seconds)| (seconds) (seconds)
3 (1 server, 1 worker) | 0.66 0.33 0.032
4 (1 server, 2 workers)| 0.60 0.16 0.072
5 (2 servers, 2 workers)) 0.62 0.19 0.038
6 (2 servers, 3 workers)) 0.55 0.17 0.037

Average time for call to UpdateSegmentList on first strip descriptor = 0.0000062

Machine: Work Station cluster

Number of Processes

Sort Time
(seconds)

Join time
(seconds)

GAD Time - Source
(seconds)

4 (1 server, 2 workers)
5 (2 servers, 2 workerg
6 (2 servers, 3 workers

0.82
1.60
1.22

0.47
0.88
0.63

0.691
0.914
0.896

Unfortunately no result could be obtained for 3 processors or the times to call UpdateSeg-
mentList due to a software error.

Time to complete Sort phase against Number of processes

10

Time in seconds

EG——F& Amber
/~——4 Lomond Front End

—/ Lomond Back End
G—>© Work Station Cluster

Number of processes

Figure 4: Results for Sort

EPCC-SS599-02

13

Time to complete Join phase against Number of processes

Time in seconds

6 - , . ' bl

G—-F Amber
/~——=\ Lomond Front End

—/ Lomond Back End
G—© Work Station Cluster

IN

w

N
fm)

Number of processes

Figure 5: Results for Join

Time to complete GAD phase against Number of processes

Time in seconds

15

0.5

Amber

/~—7A Lomond Front End
Lomond Back End

G——0 Work Station Cluster

3 4 5 6
Number of processes

Figure 6: Results for GAD

EPCC-SS599-02 14

5 Conclusion

As can be seen from the tables, the timing results for amber and the front end of lomond are
fairly poor. This can be expected from amber, since it is a single processor machine. Work from
previous SSP projects has also shown that the large amount of small messages that get passed
in the Sort phase contributes to the poor scaling reflected in all the timings.

The back end of lomond gives some interesting results. The Sort and Join times do not improve
in a monotonic manner, and the GAD phase gets faster after four processes. The results for Sort
and Join are probably due to the balancing between increased communication and division of
the tasks between processes. This may be attributable to the small dataset used, and could well
disappear when division of the task between more processes yields more noticeable results on
a larger set. The decrease in GAD source time is somewhat strange however, and would bear
further investigation.

The cost of communication is exacerbated when working with the work station cluster, as they

communicate across an ordinary network. This can be seen with the increase in time for Sort.
The Join stage has a similar variation in time as that executed on the lomond back end, again
probably due to the balancing of communication and workload, and the effects of using a small

dataset.

The scaling of the program when a timing improvement occurs (such as on the E3500) is pretty
poor, but the reasons for this have been given above. Hopefully larger datasets and the use of
parallel 1/0O will improve the eventual parallel efficiency of the code, in conjunction with tests
for pool splitting when the final implementation of rasterisation is completed.

5.1 Future Work

Unfortunately, due to timing constraints not as much of the functionality was implemented as I'd
hoped, but hopefully the communication framework is now stable enough. Further implemen-
tation (completing RasteriseLine and its utility functions) only involves 1/0 and a small amount
of GAD worker functionality, and so should be relatively straightforward to write. Testing on
larger datasets would also be useful to investigate scaling and the heuristic for splitting the pool
group on realistic rasterisation tasks.

6 The Summer Scholarship Programme

| applied to be a part of the EPCC SSP programme to get an insight into how research depart-
ments operate and specifically to gain experience of the state of the art in parallel computing.
As part of my course next year | will undertake a large project, which involves implementing

a library of parallel numerical algorithms on a simulated PRAM. This course has been a use-
ful precursor to that, and in addition | have learnt a lot about high performance computing in
general.

I would like to say thank you to Connor for supervising me, and to the EPCC for hosting the
programme. | would like to thank the staff of EPCC and the other SSP students for making this
an enjoyable ten weeks.

EPCC-SS599-02

15

7 Appendix - Code

/* *

*

*

: Filename: rasterise.c

: Authors: Connor Mulholland EPCC, Thomas Ashby SSP, Terry Sloan EP
: Purpose: Rasterisation

* Used in: V2R

* EPSRC Parallel Geo%raphlcal

* Information Systems

* Edinburgh Parallel Computlng Centre/

: University of Edinburgh Department of Geography
: RCS: $ld: rasterise.c,v 1.12 1999/09/13 15:29:48 ashby Exp ashby $
*

*

static char_rcsid[]=
"$ld: rasterise.c,v 1.12 1999/09/13 15:29:48 ashby Exp ashby $";

*

<
*

$Log: rasterise.c,v $
Revision 1.12 1999/09/13 15:29:48 ashby
About to alter timing setup.

Revision 1.11 1999/09/08 16:26:51 ashby
Update segment list should be working

Revision 1.10 1999/08/27 08:57:38 ashby
Version that compiles, links, and
runs (after a fashion).

Revision 1.9 1999/08/25 10:21:17 ashby
Hopefully done up to Update Segment List.
Will now try compiling.

Revision 1.8 1999/08/16 12:35:35
Compiling to run totalview.

Revision 1.7 1999/08/13 11:05:31 ashby "
Hopefully done up to rasterise strip. Will ‘now try compiling.

Revision 1.6 1999/08/12 16:10:09
About to do rasterise function?

Revision 1.5 1999/08/11 15:34:33 ashby
About to hack hoooj chunks out of rasterise/worker,
saving now to avoid catasrophy should failure occur.

Revision 1.4 1999/08/10 11:49:47 ashb

ashby

ashby

=)

Revision 1.2 1999/08/05 16:01:25 ashby
(Hopefully) done up to RasteriseWorker();

Revision 1.1 1999/08/05 10:10:39 ashby
Initial revision

Revision 1.1 1999/06/18 09: 34 32 connor
Source code used in V2R phas

% ok ok ok E kb ok bk F E Sk kb ok b R S Kk kb ok b b % F F b b F

*
I *
*
M Included files
* ¥/

/* #include <mpi.h> */

/* WARNING - This header was generated by Tom. */
#include “rasterise.h"

/* WARNING - not sure if this is the ultimate path to this header flle as
the overlay internal header is stored in the po directory itself *
#include "../VZR/v2r-internal.h"

#include "../misc/debug.h"

/* #include "../misc/gis-internal.n" */
#include " Im|sclpar ition.h"

I* #mclude " llncludelgls h* */
#include "../ntf/ntf.h

#include "../vect |n/VectorIn ut.h"
I #mclude N lg ad/ga h

#include " Iga /ga mF

#include " gad/gad in ernaI h"

I #lnclude / ad/gad-worker.h" */
#include "../gad/gad-worker-internal.h"
#include " Ijom/]om h"

I* *

*
* Global Variables

* *

static double overallTimeG;

static int thisRasteriseCommRankG;

/* *
*

: Initialise debugging stack

* *
DEBUG_DECL;
* *
*
: ~RasteriseSource()
: Effect : Rasterisation on Source process
*

*

This is the more complete shell. Am nOV\)I/ working to get as much functioning as possi

cC

void RasteriseSource(char h
c

<
*

ple.

*lnfllel
ar infile2, /* 2nd

/* 1st input file *

input file */

char outfile, /* output file */

RasterlseMethodT rType * rasterlsatlon option *
eg. Attribute area,

: weighted attribute

etc.
MPI_Comm rasteriseComm, /* Con|1|mun|c|ator for
) * processes
int sourceRank, * source rank in
. * rasteriseComm
int nDatasets
)
|nt mplErr /* MPI return value. *

/* No of MPI processes */

ze:
VectorlnputHeaderT **|nf|IeHeader I* Input file headers

Appl| Arg applchrgs /* Application arguments */
!nt >€Min;
int xMax;
int yMln;

boundmgBox
nMiniPartitions;
miniPartitionSize;

EtteaIBoundingBoxT
I}QstutitionsizeT
<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL > SESEESSESSSSSSSSSSSSSSSSSSSSS>>>>> 4/
ENTRY("RasteriseSource");

TRACE(DEBUG_ALL,

printf(" Process %d has entered RasteriseSource\n”,
sourceRank););

* *

* Check to make sure that there is only one dataset to avoid
* vommiting later on. ¥

if (nDatasets !
(ERR FATAL(G)E INTERNAL_ERROR, "Number of datasets not equal to one.\n");

ke

* Send rank of Source to all other processes in rasterlseComm MPI
* commumcator

*
mpiErr_ = MPI Comm smeérasterlseComm &size);
if (mplErr 1= MPI_SUC
R_FATAL{mpiErr, "Error in MPI_Comm_size. \n");
for (i = 0; i < size; i++)
if (i != sourceRank)
mpiErr = MPI_Send(&sourceRank,1,MPI_INT,i,0,rasteriseComm);
if %RP'E” '= MPI_SUCCESS) .
_FATAL(mpIEr, "Error in MPI_Send. \n");
}
% *

* Get header for each input.

*

TRACE(DEBUG ALL,
printf("RasteriseSource: Getting input file header.\n"););

infileHeader = (VectorinputHeaderT **2
gis_malloc(nDatasets *
sizeof(VectorinputHeaderT *));

infileHeader[0] = VectorlnputGetHeader(infilel);

TRACE(DEBUG_ALL, printf("infileHeader[0]->nAttributes = %d.\n",
infileHeader[0]->nAttributes););
I *
Check that the projections are compatible.

*
*
* |t is not clear how this is going to be done_ since the Vectorlnput-
* Header files do not include the neccessary field to test/thls

I *
* compute the bounding box from the input bounding box in the file
M header. “

*

boundingBox.xMin infileHeader| Oj ->xMin;

boundingBox.yMin infileHeader[O:
boundingBox.xMax = infileHeader]
bloundlngBox .yMax = infileHeader[O

>yMax

/* WARNING - We're actuall

hard coding the boundlng box size for the
moment, an

N the cell sizes? -
boundingBox.xMin = EReaICoordT -9999;
boundingBox.yMin = (RealCoordT) -9999:
boundingBox.xMax = (RealCoordT) 9999;
boundingBox.yMax = (RealCoordT 9999

ke

* Construct the rasterisation arguments and drop the rastensanon
M I’ntethod into the wrapper function to be picked up by RasteriseStrip
ater on.
*

/* WARNING - Randomly (generated Cell size! */
ConstructRasterisationArgs(applch?

fI
boundingBox.xMin,

. *

EPCC-SS599-02

16

boundingBox. ngn,

RealCoordT,;

%eaICoordT 0.1,

60J;
RasteriseMethodWrapper(TRUE, &rType);
/* *

* Write output file header - not too sure whether this is relevant
* at this stage. "

*

* Determine the mini partition size.
% dependent upon this.

*
The partition size is
*/

nMiniPartitions = RASTERISE_GAD_N_MINI_PARTITIONS;

/* DEBUG */ - -
printf("Number of mini partitions = %d\n", RASTERISE_GAD_N_MINI_PARTITIONS);

miniPartitionSize = (boundingBox.yMax - boundingBox.yMin)/nMiniPartitions;

* *
: Call VectorlnputSource "

VectorlnputSource(lnflIel /* 1st |nput file */
fI 2, / nd input file */
utfile output file */
"GIS Package ID (GPID) " /* 1st attribute */
NU /* 2nd_attribute *
&boundingBox, /* operatioal area */
&applicArgs, /* Application arguments */
miniPartitionSize, I* size of smalles work Y
str]
nMiniPartitions, * Number of smaP{est *
in _bounding box */
&GADWorkContent, I* functlon for work *
X * content in a stri */
rasteriseComm, /* Communicator for all *
* overlay processes */
sourceRank I* source rank in *
) * overlayComm A
* *
* Return
* */
return;

[<<<LLLLLLLLLLLLLLLLLLLLLLLKLKLLKL BN SO555555555555555555555555555555>> ¥/

-

~ConstructRasterisationArgs()

Effect :

kb ko E E

*

void ConstructRasterisationArgs(AppIicArgsﬂ' *applicArgs; nfiled.,
char

char *outflle
RealCoordT x0,
RealCoordT
RealCoordT
_thsaICoordT
n

int

)

applicArgs->V2RArgs.infile = malloc(sizeof(char)*MAX_FILENAME LENGTHZI
applicArgs->V2RArgs.. outfile = malloc(sizeof(char)*MAX_FILENAME_LENGTH);

strncpyi applchrgs >V2RArgs.infile, infilel, MAX_FILENAME LENGTH?_‘
strncpx applicAl Rgs >V2RArgs.outfile, outfile, MAX_FILENAME_LENGTH);
applicArgs->V2RArgs.areaRecsReq = TRUE;
applicArgs->V2RArgs.x0 = x0;

applicArgs->V2RArgs y0 = yO:

applicArgs->V2RArgs. xCellSize = xCellSize:
applicArgs->V2RArgs.yCellSize = CeIIS|ze
applicArgs->V2RArgs.nxCells = xCells
applicArgs->V2RArgs.nyCells = yCeIIs

¥Q,
xCellSize,
yCellSize,
xCells,
yCells

~RasterisePool()

Effect : Rasterisation on Pool process

ok ok k k k%

*

/* Communicator for all *

rasteriseComm,
rasterisation processes *

void RasterisePool(MPI_Comm

int nDatasets
{
sourceRank; /* Rank of source process */
VectorlnputArgsT vectorArgs; I Vecto_rln?_ut arguments */
ApplicArgsT apijEArgs /* Application arguments *
p| rr;

MPI_Si
VectﬁrlnputPooIRetumT pooIGroupT ype;
MPI_C rastefiseWorkerComm;

double rasterisePoolTime;
int rasteriseCommRank;

<LLLLLLLLLLLLLLLLLLLKLKLKLKLKLKLKKLKLKLKLKL > DOOOOOOOSSS55555555555555>5>5>5>5>5>>

ENTRY("RasterisePool");
o *
¥ o6t the local clock ticking...

<
*

*/
rasterisePoolTime = MPI_Wtime();

/*
* Receive the rank of the Source process in the rastenseComm MPI
: communicator. “

mpiErr = MPI_Recv(&sourceRank,
MPI_INT,
MPIZANY_SOURCE,
rasteriseComm,
&status);

if E&nErr '= MPI_SUCCESS)
R FATAL(mp|Err "Error In MPI_Recv. \n");
/* *

Call VectorlnputPool "

poolGroupType = VectorinputPool(rasteriseComm, sourceRank);
* *
* Depending on return value call the rasterise worker

?witch(pooIGroupType.pooIGroup)
case GEOM_ATTRIBUTE_SERVER_GROUP :
break;
case WORKER_GROUP :
rasteriseWorkerComm = poolGroupType.comm;
MPI_Comm_rank(rasteriseWorkerComm, &thisRasteriseCommRankG);

* *
* Extract ApplicArgs from VectorinputArgs (ie. poolGrgupType.args).
vectorArgs = poolGroupType.args;
applicArgs = vectorArgs.. apphcArgs

e *

/
¥ Set global clock ticking

*/
overallTimeG = MPI_Wtime();
RasteriseWorker(rasteriseComm,

sourceRank,
rasterlseWorkerComm
a p|c rci;
atasets);
break;
}
x *

¥ Output the local wall clock time.

*

prlnn‘("TlmlngR Pool(%d): Function complete: Time to do rasterise pool = %fin",
asteriseCommRankG,
MPI_Wtime() - rastensePooITlme)
fqush(NULL)
* *
* Return
* */
return;

-

}

/ *

*

: ~RasteriseWorker()

*

M Effect : Start up code for the Worker process in Rasterisation phase.

*

: Arguments :

* rasteriseComm MPI communicator for all rasterisation

: processes.

M sourceRank Rank of the source process in rasteriseComm.
: workerCom MPI Communicator for only worker processes.
M ApplicArgs Application arguments.

*

* Note : rasteriseComm comprises the Source and GeomAttributeServer

M processes, as well as all the workers.

* workerComm excludes the data Source and GeomAttributeServer

: processes.

* */

void RasteriseWorker(MPI Comm rasteriseComm, /* Communlcator for all *

asterisation

* Source Process Ra

/ Communicator for only

ApplicArasT icA Aol * worker ptrocesses "
ApplicArgsT_ applicArgs, ic arguments
|nrt)p nDatag%ts /*pRIO of "datasets

rocesses
sourceRank,
MPI _Comm workerComm,

gadWorkerArgs /* GAD worker arguments
trip; /* include so hacked resource *
test can be accomplished

GADWorkerArgsT
void

GADWorkerAvailableT workerAvailable; /* structure containing *

. i worker resource value

int X p|Err;

GADStripDescMessageT stripDesc i i
stripDescPtr; / GAD strip descriptor

MPI_Status status;

int msg_src; /* message source, gleaned

[<<LLLLLLLLLLLLLLLLLLLLLLLLLLKLKL ENd SOO5555555555555555555555555555>>> ¥/

*
*

*

*

*

*

*

*

EPCC-SS599-02

17

int

MPI_Datatype
MPI”Datatype
MPI”Datatype
MPI”Datatype
MPI—Datatype

GADStripSizeMsgT
_GiADSmpSueMng
n

GADGeomTransferT
GeomValueYMaxRecT

Geom2ValuesYMaxRecT

GADGeomTransferT
GeomValueYMaxRecT
Geom2ValuesYMaxRecT

int
int

int

double
int

* from status *

iLj.k; /* loop counters *

MPI_GADStripDescMessageT; .
MPI_GADStripSizeMsgT; MPI derived data type */
MPI_GADGeomTransferT;

MPI_GeomValueYMaxRecT;

MPI_Geom2ValuesYMaxRecT;

sizeMsg;
stripSizeMsg;
dataMsgSize;

/* GAD size message */
I* GAD size message */
/* size of actual message, *
* gleaned from size message */

dataMsg; /* geom data mesage */
dataMsgGeomValue; /* ‘geom value Y max data *

message
dataMsgGeom2Values; /* geom two values Y max data *
* message

geomMessagelndex; / base of array for geom *
sages
array for geom *
value messages
geom2ValuesMessagelndex;/ ba§e20f array for geom *

values messages
geomCount=0; /* counter for geom messages _*/
geomValueCount=0; /* counter for geom value *

me:
geomValueMessagelndex;/ bgse 0

* messages
geom2ValuesCount=0; /* counter for geom 2 values *
* messages

rasteriseWorkerTime;
myRank;

[* added for debug 31/8/99 */

int intbuff;

[* <<<<<<LLLLLL LKL LKL LKL LK LLLKLKLLKLKLKLL SOOODDOOODOODDOODIDOSDOOSDOSSIBSS>>> ¥

ENTRY("RasteriseWorker");

e

¥ Start the local clock ticking...

*

rasteriseWorkerTime = MPI_Wtime();

e

* Construct GADWorkerArgs.
* required by GAD Workers.

*
This contains the arguments

*

GADWorkerConstructArgs(sourceRank, applicArgs, nDatasets);

e

li
: Call GADWorkerlnit

* This function receives a message containin
* GeomAttributeServes in the GAl
: the GADWorkerArgsT structure.
*

*

the number of

phase. It includes this number in

GADWorkerlnit();

/* how the output file header

* Almost certainly.

: Eroup. This is"TSO’s

*

ets written is to be determined yet.

from a "collator" process from in the workerComm
problem. ‘I*'/he data for that header are to be

nown to all worker processes

I*_on_exitin,

from this, nothing happeg/s in operation-specific code

until applic_request_data is™ called

5

* G
: GAD workers use.

*
et the GADWorkerArgs. This contains the arguments the

gadWorkerArgs =

5

*

GADWorkerGetArgs();

*

+ Create the MPI type to send the worker available mes*s/age.

mpiErr_= MPI_Type_contiguous(1, MPI_INT, &MPI_GADWorkerAvailableT);
R IVIlylpSUCCEqSS) ¢ - N)

if (mpiErr 1=

ERR_FATAL{mpiErr, "Error in MPI_Type_contiguous.\n");
mpiErr_= MPI 'I;/pe commité&MPI_GADWorkerAvaiIabIeT);
MPI_SUCCES

if (mpiErr 1=
(FI)ERR

_FATAL{mpiErr, "Error in MPI_Type_commit.\n");

5

*

* Initialise GAD MPI datatype used to receive the strip size *
* message, gleom transfer message, geom value Y max rec T, and the
va

.
* geom

ues Y max rec T

*

GADInitMPITypesForStripDesc(&MPI GADStriéJDes_cMessa eT);
GADInltMPITypeForSmpSlzeMs%(&z\fI&'IK/IrPGAD tripSizeMsgT);
erl

GADInitMPITypesForTransferBu

5

I_GADGeomTransferT,
&MP|_GeomValueYMaxRecT,
&MPI_Geom2ValuesYMaxRecT);

*

* The following code works for a single strlipﬁof data, however, we

* must loop over until no more strips are le

do{

/* while (stripDesc.messageType =

¥
GAD_YRANGE) */

*

>

the strip size.

memory the

Bk kb kK K %

Determine the amount of space available for a strlP of data, ie.
p In the first instance this will be a fix .
Ideally we would like to find out in some way how much available
process has left to deal with. At)
sure how to resolve this but we should return to this.

Try and allocate memory to hold the strip and return if failed to
allocate enough memory

ixed size
present, we are not

*

*
*

strip = gis_malloc(750); /* 750 is hard coding for Worker resource */

if (strip ==_NULL
gERIg_FATAL(G[)S_NO_MEMORY, "Error in malloc (strip-applic_request_data).\n");

gis_free(strip);

s *
* Construct a GADWorkerAvailableT Message containin?l the
* worker resource; The worker resource is based on e*/strlp size.

workerAvailable = GAD_WORKER_RESOURCE_VALUE;
* *
: Send the GADWorkerAvailable message to the Source.*/

mpiErr = MPI_Send(&workerAvailable,

MPI_GADWorkerAvailableT,
%adWorkerArEs.sourceRank

AD_WORKER_AVAILABLE_TAG,
rasteriseComm);

if (mpiErr !'= MPI_SUCCESS)
ERR_FATAL{mpiErr, "Error in MPI_Send. \n");

I* . - -
* lIssue the receive for a strip descriptor message

mpiErr = MPI_Recv(&stripDesc,

MPI_GADStripDescMessageT,

gadWorkerArgs.sourceRan)
ADs_DESC,
rasteriseComm,

&status);

if (mpiErr != MPI_SUCCESS)
ERR_FATAL{mpiErr, "Error in MPI_Recv. \n");

* *

¥ Check the message source.

*
msg_src = status.MPI_SOURCE;

if (msg_src != gadWorkerArgs.sourceRank
iERIg’FATAL(mgpiErr, 9)

- 'RasteriseWorker : strip received

* *
* Process the strip descriptor according to its message ty})e

if (stripDesc.messageType == GAD_YRANGE)
* *

* Register the strip descriptor with GAD

*/
GADWorkerRegisterStripDesc(&stripDesc);

>
*

Set up recv’s to get the data from the GAD
GeomAttributeServers (GAServers).

For each dataset, each GAServer will send 4 messages. These are
two for the Geom records and two for the GeomValue records.

Of these two messages the first message is of fixed size and

it contains information on the size of the second message.

the second message contains the records themselves.

The sizes of the buffers to hold these second messages is
derived from the the strip descriptor message. The

strip descriptor message contains the total number of
geoms and the total number of vertices In a strip.

%k bk kK K kb ko F

*

*

>

* %

Malloc the space to hold the messages

*

geomMessagelndex = (GADGeomTransferT ‘2
gis_malloc(stripDesc.totalGeoms * sizeof(GADGeomTransferT));

geomValueMessagelndex = (GeomValueYMaxRecT *)
gis_malloc(2 * “stripDesc.totalGeoms * sizeof(GeomValueYMaxRecT));

geom2ValuesMessagelndex = ﬁGeomZVaIuesYMaxRecT *?
gis_malloc(2 * stripDesc.totalGeoms * sizeof(Geom2ValuesYMaxRecT));

for (i = 0; i < gadWorkerArgs.nGAServers; i++){
o *
* Receive a geom and a geomvalue strip size mess*?ge

for (j = 0; j < 2; j++)}{ /* geom and geomValue parcels */
* *
¥ Issue the recy for the strip size.

*

mpiErr = MPI_Recv(&sizeMsg, fec
e o

/
MPLGADStr(is)SizeMng, /* datatype, can be ms
MPI_ANY_ SOURCE, /* rank - could be MPI_ =
message tag] See bits_of_gad.h *

GADs_STRIP, I*
rasteriseComm,
&status);

if (mpiErr '= MPI_SUCCESS) .
ERR_FATAL{mpiErr, "Error in MPI_Recv. \n");

/* communicator

/* TOM 11/8/99 - really not sure whether the following line is
necessary */

I *
Unpack the message from the buffer and check its contents

from incorrect sourceRank");

et

*
M This_ message_needs to indicate which dataset and which type of data
*

it refers to.” This is so that the message to receive the actual
data is set up correctly.

/* buffer to receive messa};e */
* uffer *

ecific */
ANY_SOURCE * ;

EPCC-SS599-02

18

* */

stripSizeMsg = sizeMsg;

* *
* Allocate the buffer to receive the strip data from this *(;;AServer.

dataMsgSize = stripSizeMsg.nRecs;
o *
¥ Issue the recv for data msg. “

switch(stripSizeMsg.rectype
casz(a RpEC GE(%M: ypep
mpiErr = MPI Recv((geoml\’&esssagelndex + geomCount),
ize

MPI_GADGeomTransferT,
MPI_ANY SOURCE,
REC_GE
rasteriseComm,
&status);

if (mpiErr !'= MPI_SUCCESS)
ERR_FATAL{mpiErr, "Error in MPI_Recv. \n");

eomCount += dataMsgSize;
reak;

case REC_GEOMVALUEYMAX:
mpiErr = MPI Recv((geom\ﬁluesMessagelndex + geomValueCount),
MPI_GéomValueYMaxRecT,
MPI”ANY.
REC_ GEOMVALUEYMAX,
rasteriseComm,
&status);

if (mpiErr != MPI_SUCCESS)
ERR_FATAL{mpiErr, "Efror in MPI_Recv. \n");

geomValueCount += dataMsgSize;
break;
case REC_GEOM2VALUESYMAX:
mpiErr = MPI Recv((g%omZMaI%esMessagelndex + geom2ValuesCount),
iz
MPI GeomZVaIuesYMaxRecT
SOUR
REC GEOMZVALUESYMAX
rasteriseComm,
&status);

if (mplErr 1= MPI_SUCCESS)
RR_FATAL{mpiErr, "Error in MPI_Recv. \n");

geom2ValuesCount += dataMsgSize;
break;

deféult:
¥ Yack like a good'un

*

*
ERR_FATAL(GIS_INTERNAL_ERROR, "Unrecognised message type\n");
} I* switch(stripSizeMsg.recType) */
} /* for loop for geom and geomValue parcels */
} /* for loop for GAServers */

5

* Check to make sure we got all the messages we thought we would,
* and barf if we didn't. "

/* WARNING - added for DEBUG ONLY! */
stripDesc.totalGeoms = geomCount;

if(@eomCount == stripDesc. totaIGeoms)f
if(geomValueCount == strlPDesc totalGeoms * 2
&& geom2ValuesCoun [l

gis_free(geom2ValuesMessagelndex);

I *

* Now rasterise what we've got. This function frees the space used
* to hold the messages automatically once the parcels have been

* filled,
*/
*
Rasterlse(&stnpDesc
&(applicArgs. V2RArgs)
geomMessal

ﬂleomValuel\?essagelndex
*

Jelse if(geom2ValuesCount == strlpDesc totalGeoms * 2
&& geomVaIueCount OX

x *
* Now rasterise what we've got. This function frees the space used
* %CI)I g old the messages automatically once the parcels have been
ille
*

gis_free(geomValueMessagelndex);

*

Rasterlse(&stnpDesc
&(applicArgs.V2RArgs),
eomMessagelndex,

" geom2ValuesMessagelndex);

Jelse{

: Yack appropriately. "WRONG NUMBER OF GEOMVAL};ES REC'D"

I
I*E/RRfFATAL(GISflNTERNALﬁERROR, "Wrong number of geomValues received. \n");

printf("Whoops, never mind.\n");

}el%e{

I
* Yack appropriately. "WRONG NUMBER OF GEOMS REC’D"

ERR_FATAL(GIS_INTERNAL_ERROR, "Wrong number of geoms received. \n");

}
geomCount_= 0;
geomValueCount = 0;
geom2ValuesCount = 0;
} * if (stripDesc.messageType == GAD_YRANGE) */

Jwhile(stripDesc.messageType == GAD_YRANGE);

/*
¥ Output the local time,

*

/* Execute barrier first *
mpiErr = MPI Bamer(MPI COMM_WORLD);
|f(n|¥)|Err = _MPI_SU

RR FATAL(mplErr "Error in MPI_Barrier\n");

prmtf("Tlmng Worker(%d): Functlon complete: Time to do rasterise worker = %f\n",
stense ommRank

MPI_Wtime() - rastenseV\)orkerTlme)
fqush(NULL)

[F <<<<<<LLLLLLLLLLLLKLL LKL LLLKLKLLKLKLKLK SOOODOOODOODDIOOSDOSDDOSSIZSSDI>SSD>>>> */

=
*

Function: ~Rasterise
Effect : Instigates the rasterisation of each strip.

Called by : RasteriseWorker

ok kK K %

*/
void Rasterise(GADStr}lﬂpDescMessageT *smpDesc
V2RArgsT

*V2RA
GADGeomTransferT eom essa elndex,
GeomValueYMaxRecT

geomVaIue essagelndex,
Geom2ValuesYMaxRecT *geom2ValuesMessagelndex)

mParcel;

RecordTypeT
Parce|T
*geomValueParcel;

geomVaIueType
ol
ParcelT KH

double rasteriseTime;

* *

li
* Output global clock

*

prmtf("Tlmng Worker(%d): Tlme smce worker began: Overall time to get to rasteris

asteriseCommRank
MPI_Wtime() - overaIITlmeG)

fflush(NULL);~

> *
* start the local clock ticking... "

rasteriseTime = MPI_Wtime();

*

* Identlfé/ which type of geomValue the records are. If the
geom ValuesMéssagelndex is NULL pointer, then they must be
geomVaIueMessages

*
if (geom2ValuesMessagelndex == NULL
geomValueType = REC_GEOMVALUEYMAX;
§
geomValueType = REC_GEOM2VALUESYMAX;
GADWorkerStrlpInlt(&(geomParc \)
&(geomValueParcel),
smpDesc >totalGeoms,
stripDesc->totalGeoms' *2,
geomValueType);
* *
¥ JHl the structure to contain the sorted geoms Y

GADWorkerFuIGeomParcel(smpDesc >totalGeoms,
eomMessagelindeXx,
geomParceI)
*

I
M Fill the structure to contain the sorted GeomValues Y

GADWorkerFillValueParcel(stripDesc->totalGeoms*2,
geomValueMessagelndex,
geom2ValuesMessageindex,
geomValueParcel,

geomValueType);

RasterlseStnp(vZRAr?
ripDesc,
geomParc

cel
geomValueParcel,
geomValueType);

EPCC-SS599-02

19

I*
*
*

*
the geoms and geomValues

*

Free up the structures which have held
and clean out the strip descriptor.

gis_free(geomMessagelndex);
if (geomValueMessagelndex != NULL)
gis_free(geomValueMessagelndex);

if (geom2ValuesMessagelndex != NULL)
gis_free(geom2ValuesMessagelndex);

GADWorkerStripClose(geomParcel
geomValueParcel);

*
: Output the local time.

*

*

printf("Timir]g':Q WorkergA:d): Function complete: Time to do rasterise
thiSRasteriseCommRankG,

MPI_Wtime() - rasteriseTime);
fflush(NULL);

[* <<<<<<LLLLLL LKL LL LKL LKL LLLLKLKLLKLKLKLL SOOODDOOODDOODDOODIDOODOSSDZSSIB>EO>>> ¥

%f\n",

*

-
3 —~

$Id: rasterise.c,v 1.12 1999/09/13 15:29:48 ashby Exp ashby $
~RasteriseStrip()

Effect:

Called by:

Calls:

Algorithm:

Rasterise()
UpdateSegmentList(), RasteriseLine()
line of the sub-raster

the segment list and
the line:

each
updates
detail of

For in turn,

this function
then

fills in the raster

1/0:
Side-effect: Memory dynamically allocated and freed.

Writes an atom of raster data

Returns: None.

%k kb ok Rk kb kK K b b %

*
void RastenseSmp(VZRArgsT . *v2RArg_s,
ADStripDescMessageT *stripDesc,
ParcelT *geomParcel
ParcelT *geomValueParcel,
RecordTypeT geomValueType)

SegmentListT *asl;

RealCoordT
RealCoordT
RealCoordT

int
RasteriseMethodT
GeomDescT

yTo?, yBottom, yCellSize;
yCells;

yUpper, yLower;

line;

method;
*firstGeomDesc;

double rasteriseStripTime;

*

/*
* Output the global clock

*

printf("Timing: WorkergA:d): Time since worker began: Overall time to get to rasterise stri
thisRasteriseCommRankG,
MPI_Wtime() - overallTimeG);

fflush(NULL);

o
* start the local clock ticking...

*

rasteriseStripTime MPI_Wtime();

*
M Scan-fill_ each raster line

*/
asl = gis_malloc(sizeof(SegmentListT));

o
* Get strip y range, and the y cell size

*

yToP = stripDesc->yRange.upper;
yBottom = stripDesc->yRange.lower;
yCellSize = vZRArgs->yCellSize;
*
* Calculate number of y cells in_ strip

*/
yCells = /* round */ ((yTop - yBottom) / yCellSize) ;

I
* Initialise variables to begin loop "
Upper = yTop;

YsPbease L NULL

asl->end = NULL;

firstGeomDesc = GADWorkerGetGeomDesc(geomParcel,
geomValueParcel,
geomValueType);

*

1
T Use the wrapper to get the method argument.

*

P

method = RasteriseMethodWrapper(FALSE, NULL);
for (line = 0; line < yCells; line ++)

I+ *
* Delete old segments and add new ones to Active Segment
* List (asl)

* %/
yLower = yUpper - yCellSize;

asl = UpdateSegmentList(asl,

yUpper,
Lower,
geomParcel
geomValueParcel,
?eomVaIueType,
IrstGeomDesc);

I* *
* Rasterise scan-line y with arguments obtained from V2RArgs
* and the method wrapper.

*

/*
RasteriseLine(method,
asl
V2RArgs->x0,
V2RArgs->xCellSize,
V2RArgs->nxCells,

yUpper,
/Lower,
y irstGeomDesc);

yUpper yLower;

}
gis_free(asl);
/* flush and close output atom; */
*
* Qutput the local time
*

*

*

printf("Timing':Q Workergﬁ;d): Function complete: Time to do rasterise strip = %f\n",
thisRasteriseCommRankG, =

MPI_Wtime() - rasteriseStripTime);
} fflush(NULL);

*

<
*

$ld: UpdateSegmentList.pc,v 1.6 1994/03/25 12:32:41 tharding Exp tharding

~UpdateSegmentList()

m
=
[v]
Q
=

Deletes segments above the current raster line and adds new
ones that start on the current raster line.

alled by:
alls:

RasteriseStrip()

GADWorkerGetGeombDesc(), CompareSegments() indirectly
via gsort(), GADWorkerFillGeomOutBuf

Geoms are extracted from the active buffer inBuf
before deciding whether to add its first segment to
the active segment list so there is usually an
unprocessed pending geomDesc. This requires a geomDesc
to be extracted when the function is first called for
a given range. Note that geomDesc will be set to NULL
when the merge-tree output” buffer is empty.

C
C

Algorithm:

Each segment in asl must have new x-extents calculated for
it. This is trivial with the signed xIncrement field. Then

any continuation segments of segments in_ asl that end on
the current raster _line are created and inserted in the
Then each segment in the new segment
last call of this function iS

1 to ensure that the segment's position in the as| is
still correct after the new x-extents have been calculated.
Very rarely will segments have to be moved so instead of
using qsort() we do it manually since already sorted is
gsorf's worst” case.

%f\n",

The old nst is then overwritten by new segments from inBuf,
mallocing it if it doesn't yet exist. As a segment is
formed out of a geom the correct geomValues are located via
the hash-table, using the flagfge_d and un_flaﬁge_d GEOM_ID as
the keys. The size of the table is dynamically increased by .
a certain _amount if necessary and " decreased by a certain
amount if possible. The tunable amount prevents too much
inefficient resizing. The nst is then sorted by leftmost
x-extent, using gsort(CompareSegments).

Then asl and nst are merge-sorted: each segment in asl is
considered in turn, at eachdaomt considering “whether the
next segment in nst should be added to“asl at that point
and also whether to delete a segment from asl because it
finishes above the current raster line.

1/0:

Side-effect: Memory dynamically allocated and freed.

A pointer to the start of the ASL.

None.

Returns:

H Rk R Rk R R R F F R K R R kR R K b kb ok ok b b Tk k% sk kR K R K K R R K F

SegmentListT *UpdateSegmentList(SegmentListT *asl,
RealCoordT

RealCoordT

Parce|T

ParcelT.

RecordTypeT

GeomDescT

Lower,
geomParcel
*geomValueParcel,
geomValueType,
*firstGeomDesc)

static SegmentTableT

i *nst = NULL;
static SegmentTableT

*IastytST, NST
empl H

*geomDesc = NULL;

/* New segment list */

static GeomDescT

EPCC-SS599-02

20

SegmentT *newSegment,
*curren egment,
*tempSegment,
*newSegments

_B?oIT notDead

in

int hacktasnc

RealCoordT xlef

RealCoordT

RealCoordT yCeIiSlze

double updateSegmentListTime;

* *

¥ Start the local clock ticking...

*/
updateSegmentListTime = MPI_Wtime();
/: PREP */

: If nst == NULL malloc the space for it and lastNST.

*

*

if(nst==NULL){
* *
* Output global clock first time round

*

printf(" TlmlngR Worker(%d): T|me smce worker began: Overall time to get to update

as eriseCommRank
MPI_Wtime() - overaIITlmeG)

flush(NULL); ™

nst = gis maIIoc(5|zeof SesqrmentTabIeT))
nst->table”= gis_malloc(N NUMSEG™™*
nst->size = 0;

nst- >5|zeL|m|t = NST_NUMSEG;

lastNST = gis mallocLSsaeof(SegmentTabIeT))
lastNST-> table
lastNST-> size = 0;

}

if(geomDesc==NULL
geomDesc = first|

sizeof(SegmentT));

eomDesc;

I MAIN
* Calculate x-extents for each segment in asl

currentSegment = asl->base;

while(currentSegment!=NULL){
*

* If the segment ends above or on this rasterline, do the
* nested test. Else calculate the new x-extents.

if(currentSegment->point2.y > yLower){
* *

* If the segment ends above the current raster line delete it
* else)chec for continuations and calculate x-extnets (special

*
* */

|f(currentSegment >p0|nt2 y > yUpper){
delete” segment

/* remove from ASL */
RemoveFromASL (currentSegment, asl);

|f(currentSe?ment >justAdded == TRUE){
* d mem. just yet, as other wise the lastNST
checker will get’ crap | instead of a segment */

currentSegment->deleted =
currentSegment = currentSegmem >aslINext;

Jelse
tempSe ment = currentSegment
currentSegment = currentSegment->asINext;
gis_free(tempSegment);

else
Jels * {check for continuations and calculate x-extents
(special case - ends this line) */
notDead = GatherContlnuatlons(currentSegment

yL
yUpper - yLower);

if(notDead == z;
GADWorkerDestroy eomDesc(currentSegment->geombDesc);

swnchisIGN(currentSegment->xIncrement)){

case
currentSegment->xLeft = currentSegment->xRight;
gurrentSegment >xRight = currentSegment->point2.x;

e 0
/* in this case xLeft == xRight anyway */
breaf'
currentSegment->xRi ht = currentSegment->xLeft;
gurrekntSegment >xLeft = currentSegment->point2.x;
real

defau
ERR _FATAL(GIS_INTERNAL_ERROR, "Unexpected result from SIGN\n");

currentSegment = currentSegment->asINext; /* get next in ASL */
} /* if(currentSegment->point2.y > yUpper) */
Jelsef{

/* calculate x-extents in normal way, provided the segment wasn’t new last time

if(currentSegment->justAdded == FALSE){
currentSegment-: >xR|%ht += currentSegment >xIncrement;
currentSegment->xLeft += currentSegment->xIncrement;

currentSegment = currentSegment->asINext;

/* if(currentSegment-: >p0|nt2

> ylLower) */
} while(currentSegment!=NULL) */ y)

* *
* Now make sure new segments added last time akr/e OK.

currentSegment = lastNST->table;
* *
¥ For each segment in lastNSL

*
for(i=0; i<lastNST->size; ++i){
|f(currentSegment[|] deleted == = FALSE){
*

: lCa{cuIate) the x-extents (special case for segments added
as
*

switchiSlGN(currentSegment[i].xlncrement)){

case
currentSegmentHxLeft = currentSegment][i].xRight;

gurrentSegment XRight += currentSegment]i].xincrement;

e 0:
segment Iist =g%f}(rthls case xLeft == xRight anyway */
real

*

ca
currentSegmentHxR| ht = currentSegmentH XLeft;
currentSegment][i += currentSegment[i xincrement;

default:
ERR _FATAL(GIS_INTERNAL_ERROR, "“Unexpected result from SIGN\n");

5

* Update the parent pointer so it points to somethlng useful
* rather than junk in the lastNST “

if(asl->base != asl->end){

[* If not head of asl.. */

|f(currentSegmentL| .aslPrev 1=NULL) .
currentSegmen |.Barent = currentSegment[i].aslPrev;

* ..or if not tail..

else |f(currentSegment[|] asINext != NULL)
currentSegment[learent = currentSegment[i].as|Next;

I+ ..otherwise asl has only one element (drop through),
or it is em and somethlng has gone
badly wrong as the elements in the lastNST should

ave been “inserted -> k */
else if(asl->base ==

e
ER FATAL(GIS INTER)NAL ERROR, "Last NST elements not inserted correctiy\n"

*

* |If it is no longer in the right place,
* re-insert it.

remove it and
*

if(currentSegment][i].aslPrev = NULL &
currentSegment[i].xLeft < currentSegment asIPrev->xLeft){
RemoveFromASL| currentSengen +71),

InsertinASL(asl, (currentSegment + i)
}
*
* Unmark ’‘justAdded’ so se?ment is caught by general case
* x-extents calculation next tim “
currentSegment][i].justAdded = FALSE;
Jelse{
} gis_free(currentSegment);
} * for(i=0; i<lastNST->size; ++i){ */
1 *
* Bit of a nast hack - rather than having 2 new segment tables,
* | am om? to remember how many got added above (ie. to the start
* of the table) and | will IGNORE them when doing the ‘quicksort for
* segments added from new geoms and the following merge into the
» aclive segment list.

*/
hacktastic = nst->size;

e

*
* Add the new segnments from geoms starting on this line, and any
: continuations to the NST. "

while((geomDesc != NULL &&
&% omDesc != NO_MORE_GEOMDESCS)

(geomDesc->geom->points[0].y > yLower ||
geomDesc->geom->points[geomDesc->geom->nPoints-1].y > yLower)){

/* build first segment */
newSegment = BuildSegment(geomDesc, 0, NULL, nst);

/* check to see whether it stops on this line */
if(newSegment->point2.y > ylLower){

/* calculate x-extents - special case (stumpy segment) */
xDiff = newSegment->pointl.x - newSegment->point2.x;

swnch(SIGN(xDWf))(

newSegment >xLeft = newSegment->pointl x;

newSegment->xRight = newSegment >point2.x;

newSegment->xinctement = xDiff, /* added for completeness - probably
break: redundant

real

EPCC-SS599-02 21

case O: * */
newSegment->xLeft = _newSegment->| ointl. x
newSegment->xRight = newSegmem pointl.

newSegment->xIncrement = 0; /* added éor c(j:omplt/eteness - probably /** *
redundant
break; * Utility recursive function which checks for continuations after a
case 1: * segment and calls build if there are. If the new segment stops before
newSegment->xLeft = newSegment->point2.x; * the bottom of the raster line, the function recurses.
newSegment->xRight = newSegment >pointl.x; *
newSegment >xIncrement = xDiff; /* added foa codmplete/ness - probably * *
redundant
k' BoolT GatherContinuations(SegmentT *currentSegment
def SegmentTabIeT
ERR _FATAL(GIS_INTERNAL_ERROR, "Unexpected return value from SIGN\n"); RealCoordT L
(RealCoordT yCeIISlze)
/* get continuations */ . SegmentT *newSegment;
notDead = GatherContinuations(newSegment, BoolT notDead;
nst, ReaICoordT XDiff;
yLower RealCoordT yD|ff

yUpper - yLower); . .

/* Check for continuations */ .

if(notDead==FALSE) if(currentSegment->number < (currentSegment->geomDesc->geom->nPoints - 2))}{
GADWorkerDestroyGeomDesc(newSegment->geomDesc);

/* build it */
newSegment = Bu|IdSegment(currentSe%ment >geombDesc,
Jelse{ egment->number’ +1,
/* calculate x-extents for new segment (special case - start of segment) */ currentSegment,
xDiff = newSegment >pointl.x - hewSegment->point2.x); N
yCellSize = yUpper - ylLower; .
[* if it _stops before the end of this raster line, recurse on it */
swnch(SIGN(xDWf))(if(newSegment->point2.y > ylLower){
case -
ylef = newSe%ment >pointl.y - newSegment->point2.y); /* Recursive Case */ .
newSegment->xLeft = newSegment->point lx notDead = GatherContinuations(newSegment,
newSegment >xRight = newSe ment >p0|nt nst,
BIDI“ % (newSegment->pointl.y - yLower); yLower,
gew?(egment >xIncrement = -(x n‘f / v yCellSize; yCellSize);
reak;
case O: [* calculate x-extents for stumpy segment (special case) */
newSegment->xLeft = neWSegment >pointl.x; xDiff fnew egment->pointl.x - newSegment->point2.x);
newSegment-: >xR|ght = newSegment- >point2.x; swm:h(S GN(xDi %f)
newSegment >xIncrement = 0;
break; newSegment >xLeft = newSegment->pointl.x;
case 1: newSegment-: >><R|ght = newSegment- >p0|nt2x
yDiff_ = (neWSe%ment >pointl.y - newSegment >point2.y); newSegment->xincrement = 0;
newSegment->xLeft = neWSegment >p0|n t1.x break;
Dlﬁ) * (newSegment >pointl.y - ylLower); case 0:
newSegment->xRight = newSe ment >B newSegment->xLeft = newSegment->point1.x;
newSegment->xincrement = -(xDiff / iff) * yCeIISlze newSegment-: >xR|ght = newSegment- >point2.x;
d frela gew?(egment >xInCrement = 0;
efal real
ERR_FATAL(GIS_INTERNAL_ERROR, "Unexpected return value from SIGN\n"); case 1:
newSegment->xLeft = newSegment >point2.x;
newSegment-: >xR|ght = newSegment- >pointl. X;
/* get the next %zom descriptor */ newSegment->xincrement = 0;
geomDesc = GADWorkerGetGeomDesc(geomParcel break
geomValueParcel, defau
geomValueType); } ERR _FATAL(GIS_INTERNAL_ERROR, "Unexpected return value from SIGN\n");
! return notDead;
} /* while(geomDesc != NULL
geombDesc->geom- >p0|nts[ge0mDesc >geom->nPoints -1].y > yLower) */ telse{
/* Base Case 1 */
* /*_calculate x-extents for normal segment (special case - start of segemnt) */
* chk sort segments in the new segment table added from new xDiff = (newSegment->pointl.x - newSegment->point2.x);
* geom descripfors (see hack above).
* swnch(SIGN(xlef))(
qsort((vmd *)g nst->table + hacktastic), yD|ﬁ = newSe%ment >pointl.y - newSegment >point2.y);
nst->size - hacktasuc) newSegment->xLeft = newSegment->pointl ><
S|zeo'f(egment newSegment->xRight = newSe: ment >p0|n
&CompareSegments); glg IIY |ffl énewSegment >pointl.y - yLower);
. . gew?(egment >xIncrement = -(xDiff / yDiff) * yCellSize;
reak;
* Use InsertinASL to effectively merge-sort the NST with the ASL case O:
* */ newSegment->xLeft = newSegment->pointl.x;
X X newSegment-: >><R|ght = newSegment->point2.x;
if((nst->size) = 0){ gewiegment >xIncrement = 0;
real
* ctgay the table */
newSegments = gis_malloc(nst->size * S|zeof(*Segmen yD|ﬁ = newSe%ment >pointl.y - newSegment->point2.y);
memcpy(newSegmeths nst->table, (nst->size S|zeof(SegmentT))) newSegment->xLeft = newSegment >pointl.x
ylef) * (newSegment >pointl.y - yLower));
* use parent pomter to effect a merge sort of segments from new newSegment->xRight = newSe ment >B
descriptors */ newSegment >xIncrement = -(xDiff / yDiff) * yCeIISlze
if(ns >S|ze - hacktastic != 0){ /* annoying test, but necessary to avoid
segmentatlon fadlts */ defaul
newSegments[hacktastlc] parent = asl->end; ERRiFATAL(GISJNTERNALﬁERROR, "Unexpected return value from SIGN\n");
for(i=hacktastic + 1; i<nst->size; ++i }

newSegments[i].parent = (newSegments + i-1);

/* segment ends below this rasterline (ie. geom not dead yet) */
return TRUE;

* insert ALL of NST and update lastNST */ }
lastNST->table = InsertinASL(asl,
nst->s Jelse{
newSegments) /* Base Case 2 */

lastNST->size = nst->size;
/* all segements end on this line - kill geom */
/* clear the NST */ return FALSE;

nst->size = 0; }

else
Jels /* update lastNST */ }
lastNST->size = 0;

* *

* Output the local time. I *

* */ *

* Function: BuildSegment
printf(" T|m|ngR Worker(%d): Functlon complete: Time to do update segment list = %f\n|, * .
asteriseCommRank * Gets the relevant segment (denoted by number) from the geom ?omted
MP Wlme) - updateSegmentLlstTlme) * to by geomDesc, and makes it in the” next available slot in the table
fflush(NULL); * of the new se ment table structure (nst).. Reallocs the nst if there
* are no_slots left. Also reallocs after the function is complete

* * * * if possible, to save space.

¥ Return the pointer to the new ASL. " * *
) return asl; SegmentT *BuildSegment(GeQngDescT geomDesc

in um
SegmentT *parent,

» . SegmentTableT *nst)
*
* End of UpdateSegmentList.pc { int index;

int index2;

EPCC-SS599-02

22

* Jlgg{ﬁry pokery to get round fact that points can be ordered
ér way in eom
|f(gengesc >geom->points[0].y > geomDesc->geom->points[geomDesc->geom->nPoi
ex = number;

index2 = number + 1;

Jelse
index_= geomDesc->geom->nPoints-1_- number;
index2 =

geomDesc->geom->nPoints-2 - number;

table if it isn't big enough */
nst >sizeLimit)

nst- >S|zeL|m|t +_ NST_INCSEG;

/* initialise segment */

nst->table[nst->size].geomDesc = geomDesc; /* pointer to parent geomDesc */
nst->table[nst->size].pointl geomDesc->geom->points[index];
nst->table[nst->size].point2 geomDesc->geom->points(index2];
nst->table[nst->size].parent rent;
nst->table[nst->size].number = number;
nst->table[nst->size JustAdded TRUE;

nst->table[nst->size].deleted = FALSE;
nst->table[nst->size].as|Next NULL
nst->table[nst->size].aslPrev = NULL:
nst->table[nst->size].csINext = NULL;

nst->size++;
[* realloc the table to save space |f 8055lble (as long as_ it isn't min size alread
if(nst->size < nst->sizeLimit - G && nst->sizelimit > NST
nst->table = realloc éq_/md %nst >Tab|e (nst->sizeLimit - NST_INCSEG)*sizeof(Seg
nst->sizeLimit -= N

/* return a pointer to the segement just initialised in nst */
return (nst->table + nst->size-1

}

/* *
*
: Function: InsertinASL
* Inserts 'numOfSegments’ number of segments into the active segement
* list pointed to by asl. The newSegments pointer is treated as the
* base of a contiguous array if numOfSegments is > 1. The se ments
* are assumed to have a member paren that points to a member in
M the asl or is NULL if the asl is empty.

*

*asl,
numOfSegments,
*newSegments)

SegmentT *InsertInASL(Segm?ntLlstT

SegmentT
{. N
int i;
SegmentT *current;
/> for each segment in table (usually nst table) */
for(i=0; i<numOfSegments; ++i){

/* get its parent */

curfent = newSegments[i].parent;
/* provided there is a parent (=== to saying the asl is NOT empty) */
|f(cBrrent I= NULL){ P ¢ ying Py)

[* check to see_which way we are scanning */
if(newSegments[i].xLeft < current->xLeft){

* scan left (do(}whlle construct used to avoid redundant first test) */
do _current = cutrent->aslPrev.

wh||e(current 1= NULL && newSegments]i].xLeft < current->xLeft);
Jelse{

/* scan right */
while(current->asINext !=
c

urrent = current->asINext;
}
[* check for 'head of list' condition */
|f(current =NULL

newSegments|il.asiNext = asl->base;
newSegments|il.aslPrev = NULL;

as|->base = newSegments + |)
Jelse{
/* ‘insert normall
newSegmentsi asINext = current->asINext;
newSegments|i].aslPrev = current;

current->asINext = (newSegments + i);

}

/* if not 'end of list’ completedom *
if(newSegmentsil.asINext

newSegments|i].asINext- >asIPrev = (newSegments + i);
/* otherwise update the asl */
asl->end = (newSegments + i);

ints-1].y|

I
ealloc((void *)nst->table, (nst->sizeLimit + NST_INCSEG)*sizeof(SegmentT));

y) */
mentT))]

NULL && newSegments[i].xLeft >= current->asINext->xLef]

*

void RemoveFromASL(SegmentT

{

<
*

%k kR kK R K kR kR F E K K kR ok kb R K X

int

* ok * k

RasteriseMethodT static RasteriseMethodWrapper(BoolT

{

Jelse{ .
[* “asl reV|oust empty, so insert first element */
I* F Only ever occurs with_first element of NST - after that ASL is
not empSy Be ca reful with parent pointers!] */
as|->base = newSegment:
asl->end = newSegments;’
Y* for(i=0; i<numOfSegments; ++i){ */

return newSegments;

/
y Describe RemoveFromASL

*segment,

SegmentListT *asl|

/* normal case */
If(segmentoaslprev 1= NULL

segment->asiNext = NULL){
segment->asINext->asIPrev = segment->as|Prev;
segment->aslPrev->asINext = segment- >as|Next!

/* head of list */

}else if(segment- >asIPrev == NULL){
asl->base = segment->asINext;
segment->asINext->aslPrev = NULL;

/* end of list */

Jelse if(segment->asiNext == NULL)
asl->end = segment- >asIPrev
segment->aslPrev->asINext = NULL

I* smgle element */
Jelse if(segment->asIPrev ==
& segment- >asINext
asl->base = NULL,
asl->end = NULL;"

*

$ld: rasterise.c,v 1.12 1999/09/13 15:29:48 ashby Exp ashby $

~CompareSegments()

Effect: Compares the minimum x extents of a

two segments on
scan-line.

Called by:
Calls:
Algorithm:

gsort()

leftmost x-values of the

Uses the difference between the) X
twi raster line, to decide whether

0 segments on the current
their order should be swapped.
1/0:

Side-effect: None.

None.

Returns: The sign of the difference between the xLefts of the first

and ‘second segments.

*
CompareSegments(SegmentT *segmentl, SegmentT *segment2)
return SIGN(segmentl->xLeft - segment2->xLeft); /* Ascending */

End of CompareSegments.pc

*

Describe RasteriseMethodWrapper

. construct,
;?astenseMethodT *rMethod

static RasteriseMethodT method;
|f(construct::TRUE && rMethod!=NULL){
ethod = *rMe
retum GIS_V2R AfTR _AREA;
Jelse |f(constr#c(tj::FALSE && rMethod==NULL){

/* This is a nonsense value which gets
chucked away */

return met
else.
} ERgR_FATAL(GIS_INTERNAL_ERROR, "RasteriseMethodWrapper called with wrong arguments.

EPCC-SS599-02 23

References

[1] Tor BernhardsenGeographic Information System¢iak IT, Norway, 1992.

[2] Donna J. Peuquet, Duane F. Marble, edifotroductory readings in Geographic Informa-
tion SystemsTaylor and Francis, 1990.

[3] Richard Healey, Steve Dowers, Bruce Gittings and Mike Mineter, edRarallel Process-
ing Algorithms for GIS Taylor and Francis, 1998.

[4] Connor Mulholland. Rasterisation: Detailed design update. Technical report, EPCC, 1999.

Thomas Ashby

Final year joint honours degree, Artificial Intelligence and Computer Science
University of Edinburgh

e-mail: T.J.Ashby@sms.ed.ac.uk

Supervisor - Connor Mulholland

