
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

EPCC-SS99-05

Java OpenMP

Mark Kambites

Abstract

OpenMP is a specification of directives and library routines for shared memory parallel
programming. At the time of writing, OpenMP standards exist for the C, C++ and Fortran
programming languages.

This report investigates the definition and implementation of OpenMP for Java, based
on Java’s native threads model. A specification for OpenMP for Java is proposed and
discussed. A compiler and runtime library, both written entirely in Java, are presented,
which together implement a large subset of the proposed specification.

EPCC-SS99-05 2

Contents

1 Introduction and Background 3
1.1 OpenMP Essentials . 3
1.2 Java Native Threads Essentials . 4
1.3 OpenMP for Java . 4

2 OpenMP for Java 4
2.1 Format of Directives . 4
2.2 Theonly directive . 5
2.3 Theparallel construct . 5
2.4 Thefor andordered directives . 6
2.5 Scheduling . 7
2.6 Thesections andsection directives . 7
2.7 Thesingle directive . 7
2.8 Themaster directive . 8
2.9 Thecritical directive . 8
2.10 Thebarrier directive . 8
2.11 Reductions . 8
2.12 Combined parallel work-sharing directives . 9
2.13 Nesting of Directives . 9
2.14 Library Functions . 10
2.15 TheLock andNestLock classes . 10
2.16 Environment . 11

3 Comparison with Existing Standards 11
3.1 Thedefault clause . 11
3.2 Scoping and Loops. 11
3.3 Reductions . 12
3.4 Flushing . 12
3.5 Theatomic directive . 12
3.6 Thethreadprivate directive andcopyin clause 12
3.7 Library functions . 12

4 The JOMP Runtime Library 13
4.1 Structure of the Library . 13
4.2 A Question of Personal Identity. 13
4.3 Initialisation . 14
4.4 Tasks and Threads . 14
4.5 The Machine class . 15
4.6 Nested Parallelism . 15
4.7 Barriers . 15
4.8 Reductions . 15
4.9 Scheduling . 16

4.9.1 TheLoopData class . 16
4.9.2 TheTicketer class . 16
4.9.3 Scheduling Support .. 17

4.10 Ordering Support .. 17
4.11 Locks . 17

EPCC-SS99-05 3

4.12 Critical Regions . .. 18

5 The JOMP Compiler 18
5.1 Mode of Operation . 18
5.2 The Symbol Table . 18
5.3 Personal Identity Revisited .. 19
5.4 Theparallel directive . 19
5.5 Thefor directive . 20
5.6 Theordered clause and directive . 20
5.7 Thecritical directive . 20
5.8 Thebarrier directive. 20
5.9 Themaster directive . 21
5.10 Thesingle directive . 21
5.11 Thesections directive . 21

6 JOMP in Practice 21

7 Outstanding Issues 22
7.1 Exception Handling . 23
7.2 Flush and the Java Memory Model . 23
7.3 Error Handling . 23
7.4 Efficiency Issues . 24

8 Conclusion 24

1 Introduction and Background

1.1 OpenMP Essentials

The OpenMP Application Program Interface is a standard for user-directed, shared-memory
parallel programming. At the time of writing, OpenMP standards exist for C and C++ [3], and
for Fortran [2].

The OpenMP programmer supplements his code withdirectives, which instruct an OpenMP-
aware compiler to take certain actions. Some directives indicate pieces of code to be executed
in parallel by a team of threads. Others indicate pieces of work capable of concurrent execution.
Yet others provide synchronisation constructs, such as barriers and critical regions.

OpenMP is unusual among such systems in that directives may beorphaned— work-sharing
and synchronisation directives may appear in functions which are capable of being called from
within either parallel or serial regions, and must bind to the appropriate enclosing constructs at
runtime.

The directives are specified in such a way that they will be ignored by a compiler without
OpenMP support. This makes it easy to write portable code which exploits parallelism where
available but runs sequentially where necessary.

In practice, OpenMP is sometimes implemented not directly by the compiler, but rather by a
preprocessor. Such a preprocessor transforms the OpenMP directives into native constructs of

EPCC-SS99-05 4

the language, employing library and system calls as appropriate to provide parallelism. Our
intention is to implement such a preprocessor for Java.

1.2 Java Native Threads Essentials

Java supports parallelism through itsnative threadsmodel [4, 9, 10].

A thread may be created by declaring an instance of the library classjava.lang.Thread ,
and started by calling itsstart() method. The thread’s constructor takes as a parameter an
object which implements theRunnable interface, therun() method of which is executed by
the new thread. Alternatively, theThread class may be extended to implement theRunnable
interface itself, in which case its ownrun() method is used. A thread runs until it finishes its
task, and any thread may wait for another thread to terminate, using thejoin() method.

1.3 OpenMP for Java

This report investigates the possibility of defining and implementing OpenMP for Java, using
Java’s native threads model. Section 2 suggests a possible OpenMP specification for Java, while
Section 3 explains the differences from the existing standards.

Section 4 sees the introduction of a runtime library, written entirely in Java, which provides sup-
port for parallellism of the kind required by OpenMP. Section 5 introduces the JOMP prepro-
cessor, which transforms Java code with OpenMP directives into Java with calls to the runtime
library.

In Section 6, we see an example of the JOMP system in operation. Section 7 raises some
outstanding issues, which would benefit from further research, while Section 8 concludes, eval-
uating work done.

2 OpenMP for Java

In this section, an informal specification is suggested for a Java implementation of OpenMP.
This is heavily based on the existing OpenMP standards for other languages, but the exposition
assumes no prior knowledge of OpenMP.

2.1 Format of Directives

The Java language has no standard form for compiler-specific directives, so we follow the For-
tran standard by embedding directives in comments. A directive takes the form:

//omp <directive> <clauses>
[//omp <extra clauses>].....

Directives are case sensitive. Some directives stand alone, as statements, while others act upon
the immediately following Java block or statement. Directives donotneed to be terminated with
a line break, but failure to do so may of course affect the meaning of code to a non-OpenMP
compiler.

EPCC-SS99-05 5

Syntactically, a directive is a production of the JavaStatement nonterminal, and so can ap-
pear anywhere a statement can appear. Those directives which act upon the immediately follow-
ing blocks, incorporate those blocks. Semantically, it only makes sense to use a directive within
a method body. In particular, for simplicity of implementation, directives maynotappear within
the body of a static class initialiser.

2.2 Theonly directive

Theonly construct allows conditional compilation. It takes the form:

//omp only <statement>

The relevant statement will be executed only when the program has been compiled with an
OpenMP-aware compiler.

2.3 Theparallel construct

Parallelism in a Java OpenMP program is initiated by aparallel directive. Aparallel
directive takes the form:

//omp parallel [if(<cond>)]
//omp [shared(<vars>)] [private(<vars>)] [firstprivate(<vars>)]
//omp [reduction(<operation>:<vars>)]
<Java code block>

When a thread encounters such a directive, it creates a new thread team if the boolean expression
in the if clause evaluates to true. If noif clause is present, the thread team is unconditionally
created. Each thread in the new team executes the immediately following code block in parallel.

At the end of the parallel block, the master thread waits for all other threads to finish executing
the block, before continuing with execution alone.

Theshared ,private , firstprivate andreduction clauses take as parameters comma-
separated lists of variable names. Eachlocal variable which is declared outside the code block
but referenced within it must be specified to beprivate , firstprivate or shared . If a
variable isshared , the same copy is in scope for each thread. If a variable isprivate , each
thread receives its own, uninitialised copy. If it isfirstprivate , each thread receives its
own copy, initialised to the current value of the global copy.

Class members are always shared, and may not appear in ashared , private , firstprivate
or reduction clause.

As always when programming in Java, it is vital to remember that all object and array names
are just references. Thus, declaring an object or array (reference) to beprivate creates only a
new, uninitialisedreferencefor each thread — no actual objects or arrays are allocated. Further,
making an objectfirstprivate gives each thread its ownreferenceto asingleobject.

If one or morereduction clauses are specified, the values of the appropriate variables held
by each thread are combined as described in Section 2.11.

EPCC-SS99-05 6

2.4 Thefor and ordered directives

A for directive specifies that the iterations of a loop may be divided between threads and
executed concurrently. Afor directive takes the form:

//omp for [nowait] [reduction(<operator>:<vars>)]
//omp [schedule(<mode>,[chunk-size])]
<for loop>

The loop must have a particular “canonical” form:

for(<integer-type> <var>; <var> <relation> <expr>; <inc>)

where

<integer-type> is one ofshort , int andlong ,

<relation> is one of<, <=, >=, >,

<inc> is one of<var>++ ,<var>-- ,++<var> , --<var> ,<var>+=<expr> ,<var>-=<expr> ,

<expr> is an expression of (or capable of implicit casting to) the same type as<var> , the
value of which is loop invariant.

If a for directive is encountered within the dynamic extent of a parallel region, then the iter-
ations of the loop will be divided amongst the threads in the current team, according to some
scheduling strategy(see Section 2.5).

It is necessary that a givenfor construct is encountered by all threads in a particular team, or
by none. The increment and comparison expressions are evaluated an unspecified number of
times and without synchronisation, so side-effects may have unpredictable consequences.

If a for directive is encountered during serial execution, the loop will be executed by the single
thread.

By default, there is an implicit barrier at the end of afor construct. This can be disabled by
the use of thenowait clause. Note that there is no implicit barrier at the beginning of afor
construct — execution of parts of the loop may commence before all threads have completed
the previous operations.

If one or morereduction clauses are specified, the values of the appropriate variables held
by each thread are combined as described in Section 2.11.

It is for the user to ensure that execution of the loop has the same (or an acceptably similar)
effect when the order of iterations is altered, and when iterations are executed concurrently.

Theordered directive and clause are provided to assist with this task. Theordered clause
is used to specify that anordered block may appear within the loop body. Theordered
directive is used to specify that a block of code within the loop body must be executed for each
iteration in the order that it would have been during serial execution. It takes the form:

//omp ordered
<code block>

Upon encountering theordered directive, a thread will pause until the associated code block
has been fully executed by all “previous” iterations, before itself commencing execution of the

EPCC-SS99-05 7

block. Theordered directive must appear within thestaticextent of the loop body, and only
one such construct may appear within each loop. The ordered construct must be encountered
exactly once during every iteration of the loop, or during none. All scheduling strategies ensure
that each thread executes those iterations allocated to it in the correct order, thus ensuring that
theordered construct cannot deadlock.

2.5 Scheduling

A scheduling strategydictates the manner in which the iterations of a loop are divided up be-
tween threads. Three different scheduling strategies are provided —static , dynamic and
guided . The chunk size specified is interpreted in different ways for different strategies.

The scheduling strategies provided are the same as those documented in the existing OpenMP
standards. For a more detailed explanation of their operation and intended use, please refer to
either the C and C++ [3] or the Fortran [2] standards.

2.6 Thesections and section directives

Thesections directive is used to specify a number of sections of code which may be executed
concurrently. Asections directive takes the form:

//omp sections [nowait]
{

//omp section
<code block>

[//omp section
<code block>]...

}

The sections are allocated to threads in the order specified, on a first-come-first-served basis.
Thus, code in one section may safely wait (but not necessarily busy-wait) for some condition
which is caused by an “earlier” section without fear of deadlock. Also, placing long sections
first may improve execution time.

As with a for construct, there is an implicit barrier at the end of asections block unless
thenowait clause is specified. There is no barrier implied at the beginning of asections
block.

2.7 Thesingle directive

Thesingle directive is used to denote a piece of code which must be executed exactly once
by some member of a thread team. Asingle directive takes the form:

//omp single [nowait]
<code block>

EPCC-SS99-05 8

A single block within the dynamic extent of a parallel region will be executed only by the
first thread of the team to encounter the directive. Asingle block must be encountered by all
threads in the team, or by none.

As with a for construct, there is an implicit barrier at the end of asingle block unless the
nowait clause is specified. There is no barrier implied at the beginning of asingle block.

2.8 Themaster directive

The master directive is used to denote a piece of code which is to be executed only by the
master thread (thread number 0) of a team. Amaster directive takes the form:

//omp master
<code block>

There is no implied barrier at either the beginning or the end of amaster construct, and there
are no restrictions on which threads may or may not encounter the construct.

2.9 Thecritical directive

The critical directive is used to denote a piece of code which must not be executed by
different threads at the same time. It takes the form:

//omp critical [name]
<block>

Only one thread may execute a critical region with a given name at any one time. Critical
regions with no name specified are treated as having the same name. Upon encountering a
critical directive, a thread waits until a lock is available on the name, before executing the
associated code block. Finally, the lock is released.

Critical blocks are implemented using nested locks (see Section 2.15), so that a thread may
safely enter a critical region while already within one of the same name.

2.10 Thebarrier directive

The barrier directive causes each thread to wait until all threads in the current team have
reached the barrier. It takes the form:

//omp barrier

All or none of the threads in a team much reach the barrier if the system is not to deadlock.

2.11 Reductions

A reductionuses an associative operation to combine the different values taken by a given private
variable across different threads. Reductions are specified as clauses on either aparallel
directive (see Section 2.3) or afor directive (see Section 2.4). The reduction will be carried

EPCC-SS99-05 9

out on completion of the appropriate construct. On afor directive, the result of the reduction
will be copied to all threads.

For a reduction operation to make sense, the reduction variable must beprivate . On afor
directive, the reduction variable must beprivate within the dynamically enclosing parallel
region. The value resulting from the reduction will be copied to all threads. On aparallel ,
parallel for or parallel sections directive, the result of the reduction will be
placed in the variable when execution of the parallel region finishes.

Currently supported are+ and* reductions on the integer (short , int andlong) and floating
point (float anddouble) types, and&&and|| reductions on theboolean type.

2.12 Combined parallel work-sharing directives

For brevity, two syntactic shorthands are provided for commonly used combinations of direc-
tives. Theparallel for directive defines a parallel region containing only a singlefor
construct. It takes the form:

//omp parallel for <clauses>
<for loop>

Similarly, the parallel sections directive defines a parallel region containing only a
singlesections construct:

//omp parallel sections
{

//omp section
<code block>

[//omp section
<code block>]...

}

Almost all clauses which can be used with either aparallel directive or the appropriate load-
sharing directive may be used with a combined work-sharing directive. The single exception is
the nowait clause, which would have no purpose since the end of a parallel region always
entails a barrier.

2.13 Nesting of Directives

Work-sharing directivesfor , sections andsingle may not be dynamically nested inside
one another. Other nestings are permitted, subject to other stated restrictions concerning what
combinations of threads may or may not encounter a construct.

If a thread encounters aparallel directive while already within the dynamic scope of a
parallel region, a new team is created to execute the new parallel region. By default, this team
contains only the current thread. Some compilers may supportnested parallelismwhich, if
enabled by thesetNested() library method (see Section 2.14) or thejomp.nested system
property (see Section 2.16), may cause extra threads to be created to execute the current region.

EPCC-SS99-05 10

2.14 Library Functions

Java OpenMP provides a range user-accessible library functions, implemented as static members
of the classjomp.runtime.OMP .

getNumThreads() returns the number of threads in the team executing the current parallel
region, or 1 if called from a serial region of the program.setNumThreads(n) sets ton the
number of threads to be used to execute parallel regions. It has effect only when called from
within a serial region of the program.

getMaxThreads() returns the maximum number of threads which will in future be used to
execute a parallel region, assuming no intervening calls tosetNumThreads() .

getThreadNum() returns the number of the current threads, within its team. The master
thread of the team is thread 0. If called from a serial region, it always returns 0.

getNumProcs() returns the maximum number of processors that could be assigned to the
program or, where this cannot be ascertained, zero.

inParallel() returnstrue if called from within the dynamic extent of a parallel region,
even if the current team contains only one thread. It returnsfalse if called from within a serial
region.

setDynamic() enables or disables automatic adjustment of the number of threads.getDynamic
returnstrue if dynamic adjustment of the number of threads is supported by the OMP imple-
mentation and currently enabled. Otherwise, it returnsfalse .

setNested() enables or disables nested parallelism.getNested() returnstrue if nested
parallelism is supported by the OMP implementation and currently enabled. Otherwise, it re-
turnsfalse .

2.15 TheLock and NestLock classes

Two types of locks are provided in the library. The classjomp.runtime.Lock implements
a simple mutual exclusion lock, while the classjomp.runtime.NestLock implements a
nested lock. Each class implements the same three methods.

Theset() method attempts to acquire exclusive ownership of the lock. If the lock is held by
another thread, then the calling thread blocks until it is released.

Theunset() method releases ownership of a lock. No check is made that the releasing thread
actually owns the lock.

Thetest() method tests if it is possible to acquire the lock immediately, without blocking. If
it is possible, then the lock is acquired, and the valuetrue returned. If it isnot possible, then
the valuefalse is returned, with the lock not acquired.

The two lock classes differ in their behaviour if an attempt is made to acquire a lock by the thread
which already owns it. In this case, the simpleLock class will deadlock, but theNestLock
class will succeed in reacquiring the lock. Such a lock will be released for acquisition by other
threads only when it has been released as many times as it was acquired.

EPCC-SS99-05 11

2.16 Environment

Some options can be provided to the OMP library at runtime, in the form of Java system prop-
erties.

The jomp.schedule property specifies the scheduling strategy, and optional chunk size, to
be used for loops with theruntime scheduling option. The form of its value is the same as
that used for the parameter to aschedule clause.

The jomp.threads property specifies the number of threads to use for execution of parallel
regions.

The jomp.dynamic property takes the valuetrue or false to enable or disable respec-
tively dynamic adjustment of the number of threads.

The jomp.nested property takes the valuetrue or false to enable or disable respectively
nested parallelism.

3 Comparison with Existing Standards

This section explains and attempts to justify the differences between our proposed Java OpenMP
standard, and those already defined for C, C++ and Fortran.

3.1 Thedefault clause

Thedefault clause is not supported. Instead, behaviour is always as it is whendefault(none)
is specified in the existing standards.

This decision has been taken for reasons of both efficiency and policy. The operation of the
preprocessor is such that an overhead is incurred for each variable made either shared or private.
Thus, it makes sense to minimise the number of variables which take either status.

Further, in the author’s experience, many of the problems encountered by programmers at-
tempting to parallelise code with OpenMP stem from a failure to give sufficient consideration to
which variables should be private and which shared. The absence of thedefault clause may
encourage users to give more thought to this issue.

3.2 Scoping and Loops

Perhaps the most significant difference is thatfor and sections constructs can have no
effect on variable scope — all variables retain the status asprivate or shared given to them
within the dynamically enclosing parallel region. This is primarily to allow an easy and efficient
implementation, since code can be placed inline, with no need to declare extra variables.

For a for construct, we insist that the loop counter be declared in the loop initialiser. This
ensures that each thread has its own copy of the counter, and makes it easy for the compiler to
determine the type of the counter.

EPCC-SS99-05 12

The lastprivate clause is not supported, because a variable cannot be private within afor
construct and shared outside it. Should this prove too much of a handicap, it would be possible
to support it only for variables already declared private, on the combinedparallel for
directive, or by copying the value from the final thread to all the other threads.

3.3 Reductions

Since thefor directive cannot affect variable scopes, the requirement that the reduction variable
for a for construct beshared within the dynamically enclosing parallel region is dropped.
Instead, the reduction variable must beprivate and the reduced value will be copied to all
threads.

3.4 Flushing

The flush directive is not supported. Nor is it necessarily guaranteed that variables will be
flushed on other operations. See Section 7.2 for more discussion of this issue.

3.5 Theatomic directive

Theatomic directive is not supported. In the author’s opinion, this directive is misleadingly
named, and in practice causes many more problems than it solves. In any case, the kind of
optimisations which the directive is designed to facilitate are unlikely to be possible in Java.

Should one wish to include support, it would be quite simple and efficient to implement where
the atomically updated entity is an object or array, using Java’ssynchronized statement.
However, in practice, the value is much more likely to be of a primitive type, in which case
there is no obvious way to implement it short of using a single lock for allatomic statements.

3.6 Thethreadprivate directive and copyin clause

The threadprivate directive, and hence thecopyin clause, are not supported. Java has
no global variables, as such. The only data to which such a concept might be applied are
static class members, but attempting to make these local would be a theoretical travesty and an
implementational nightmare.

3.7 Library functions

Java OpenMP provides the same range of user-accessible library functions as specified in the C
and Fortran standards. The functions are implemented as static members of the classjomp.runtime.OMP
and the names have been changed to follow Java naming conventions. For example
omp_get_num_threads() becomesjomp.runtime.OMP.getNumThreads() .

EPCC-SS99-05 13

4 The JOMP Runtime Library

In this section and the next, we introduce a simple implementation of the specification proposed
in Section 2. The implementation has two components. Theruntime library, described in this
chapter, provides constructs to support OpenMP parallelism in terms of Java’s native threads
model. Thepreprocessor, described in the following chapter, transforms Java with OpenMP
directives into Java with appropriate calls to the library.

4.1 Structure of the Library

As well as the user-accessible functions and locks specified in Sections 2.14 and 2.15, the pack-
age jomp.runtime contains a library of classes and routines used by compiler-generated
code.

The core of the library is theOMPclass. As well as the user-accessible functions documented in
Section 2.14, this class contains the routines used by the compiler to implement parallelism in
terms of Java’s native threads model.

TheBusyThread andBusyTask classes are used for thread-management purposes, and are
described in Section 4.4.

The Machine class contains platform-specific code, such as JNI calls required to set up the
system for parallelism. It is described in Section 4.5.

TheBarrier class implements a barrier, and is used for internal thread-management purposes,
as well as for implementing the numerous OpenMP constructs which require such a device. It
is described in Section 4.7.

TheOrderer class is used to facilitate implementation of the OpenMPordered construct,
and is described in Section 4.10. TheReducer class implements reductions of variables, and
is described in Section 4.8.

TheTicketer andLoopData classes are used to facilitate scheduling, and are described in
detail in Section 4.9.

The Lock andNestLock classes implement the user-accessible locks described in Section
2.15. The latter is also employed by the library to implement the OpenMPcritical directive.

4.2 A Question of Personal Identity

In order that threads can perform different tasks, it is necessary that the code they execute has
some way of distinguishing between them. The need to support orphaned directives (see Section
1.1) means that it is not sufficient simply to give each thread a private variable indicating its
identity. Upon encountering an orphaned directive, the variable may no longer be in scope.
The only variables which will certainly be in scope are static class fields. Unfortunately, the
values taken by these are by nature common to all threads, and so cannot be used to differentiate
between them.

Nor can we simply pass an ID down the dynamic call chain, as an extra parameter for each
function. Apart from the sheer complexity involved in deciding which functions need such

EPCC-SS99-05 14

parameters and which do not, there is no guarantee that the call chain does not encompass
functions for which the source code is not available.

The only way to distinguish between threads seems to be by use of the staticcurrentThread()
method of theThread class, which returns a reference to the appropriate instance of the
Thread class. It would be nice to give ourBusyThread class an integer field in which
to store its own ID. Unfortunately, the master thread is not an instance ofBusyThread . One
approach would be to perform a runtime type check on thecurrentThread() , assuming
that we are the master thread if we cannot cast to typeBusyThread .

We can circumvent this problem by storing an absolute numerical ID for each process, in ASCII
decimal format, in the process name field. The librarygetAbsoluteID() call simply parses
the name field of thecurrentThread() . This is evidently not very efficient, but we can
reduce performance impact by minimising the number of calls togetAbsoluteID() .

To facilitate this, many of the methods in the library have two versions, one of which takes as
an extra (first) parameter the absolute process ID of the calling thread. See Section 5.3 for a
discussion of how these methods are used.

4.3 Initialisation

Initialisation is divided into two parts.

The static initialisation for the classjomp.runtime.OMP reads the system properties docu-
mented in Section 2.16. These are used to set up the numbers of threads and of processors to
use, and to set up the static subclassOptions , which contains configuration information.

The start() method is called on demand, when parallelism is invoked. It initialises the
critical region table (see Section 4.12) and all the thread-specific data, creates a team of threads,
and sets them running, whereupon they wait to be assigned a task.

4.4 Tasks and Threads

Tasks to be executed in parallel are instances of the classBusyTask . They have a single
method,go() , which takes as a parameter the number (within its team) of the executing thread.

All threads but the master are instances of the classBusyThread , which extendsThread and
has aBusyTask reference as a member. Each non-master thread executes a loop, in which it
reaches a global barrier, executes its task, and reaches the barrier again. The loop is terminated
after the first barrier call, on the setting of a flag by the master thread.

During execution of serial regions of the program, the threads all pause at the first barrier in
the loop, waiting for the master thread to reach the barrier. When the master thread calls the
doParallel() method, it sets up the tasks of each thread and reaches the global barrier,
thus causing the other threads to execute the task. The master then executes the task in its own
right, before reaching the barrier again, causing it to wait for all other threads to finish parallel
execution before continuing with serial execution alone.

All but the master thread are set up to bedaemonthreads, so that they die if the master thread
terminates. The implicit barrier at the end of every parallel region ensures that the master thread
cannot terminate while the others are doing anything useful.

EPCC-SS99-05 15

4.5 The Machine class

For some purposes, it is necessary to use the Java Native Interface to make system calls not
accessible directly through Java. For example, thegetNumProcs() routine can only be im-
plemented, if at all, by a call to an appropriate system routine. Further, on some systems it
is necessary to make system calls to configure parallelism appropriately. For example, under
Solaris one must call thesetconcurrency() routine to ensure that each Java thread can run
on its own processor.

TheMachine class is designed to encapsulate all machine-specific code, making it accessible
through a single interface. Thus, to compile on different platforms requires only the insertion
of the appropriateMachine.java file. A generic, pure Java version ofMachine.java is
provided, so that the system can be ported to any platform without changes being necessary. If
this is used, thegetNumProcs() function always returns zero.

4.6 Nested Parallelism

Nested parallelism is not currently supported. If thedoParallel() method is called by a
thread in parallel mode, thread-specific data is copied, the thread is reconfigured to be in its own
team of 1, and the task is executed. Finally, the original values of the thread-specific data are
restored.

The setNested() method does nothing, and thegetNested() method always returns
false .

4.7 Barriers

TheBarrier class implements a simple, static 4-way tournament barrier [7] for an arbitrary
number of threads. The constructor takes as a parameter the number of threads to use.

TheDoBarrier() method takes as a parameter a thread number, and causes the calling thread
to block until it has been called the same number of times for each possible thread number.

To avoid the overhead of a system call, threads busy-wait. Unfortunately, many Java systems
implement cooperative rather and pre-emptive multitasking. If for some reason the threads are
not each allocated their own processor, busy-waiting can cause deadlock. To counteract this, a
thread busy-waits by going around an empty loop a set number of times, beforeYield() ing
to other threads. The number of iterations can be set by calling thesetMaxBusyIter()
method. Different values are likely to work best with different systems.

TheOMPclass maintains aBarrier reference for each thread pointing to a single barrier for
each team. TheOMP.doBarrier() method reaches the appropriate barrier for the calling
thread.

4.8 Reductions

TheReduction class is used to implement the OpenMPreduction construct. It provides
methods for the different reductions on different types described in Section 2.11.

EPCC-SS99-05 16

A call to a reduction method causes the calling thread to wait until all other threads have called
the routine with their respective values. The method then returns to all threads the result of the
reduction.

TheReducer is implemented using a static 4-way tournament algorithm, in almost exactly the
same way as theBarrier . In fact, the amount of synchronisation employed in the current
implementation is excessive. Significant time savings might be possible with improvements in
the efficiency of the implementation.

The OMPclass maintains aReducer reference for each thread, which points to a common
Reducer for the team. Calls to the differentOMP.do...Reduce() methods from within
a parallel region are passed to the relevant method in the appropriateReducer . During serial
execution, the calls simply return their argument.

4.9 Scheduling

4.9.1 TheLoopData class

A LoopData object is used to store information about a loop or a chunk of a loop. It contains
details of the start, step and stop of a loop. The stop value is stored so as to make the loop
continuation expression a strict inequality. The object also contains a field to indicate the chunk
size to be used when dividing up the loop.

In addition, it contains a secondary step value. This allows aLoopData object to represent
a set of chunks, evenly spaced throughout a loop. Finally, there is a flag to indicate whether a
chunk is the last which could be executed by the calling thread.

TheLoopData class and associated routines are all implemented using loop counters of type
long . Loop counters of other types are cast to typelong . For efficiency reasons, it might be
worth implementing separate routines for each possible counter type.

4.9.2 TheTicketer class

The Ticketer class is used to facilitate dynamic allocation of work to different threads. A
ticketer operates either incounter mode(the default) or inloop mode.

In counter mode, the synchronizedissue() method is used to issue tickets. Successive calls to
theissue() method return integer “tickets”, starting at zero. This facility is used to implement
the OpenMPsingle andsections constructs.

The first call toissueBlock() or issueGuided() switches the ticketer toloop mode.
Calls to theissueBlock() andissueGuided() methods issue successive “chunks” of a
loop, using a block and a guided scheduling strategy respectively.

Only one of the three issuing methods may meaningfully be used with each instance of the class
Ticketer . They are implemented in a single class, to reduce the number of references that
must be maintained by the library during execution.

TheresetTicketer() method returns the next in a conceptually infinite list of ticketers, to
be used for the next operation. This allows a thread with no work to begin executing the next
work-sharing construct without waiting for its peers.

EPCC-SS99-05 17

4.9.3 Scheduling Support

The OMPclass maintains for each thread a reference to aTicketer . ThegetTicket() ,
getLoopGuided() andgetLoopBlock() methods use the thread’sTicketer to return
tickets and loop chunks as appropriate. TheresetTicket() method advances the thread’s
reference to point to the nextTicketer . When all threads have advanced past aTicketer ,
no reference to the object remains, and so it will be available for garbage collection.

ThegetLoopStatic() method is implemented directly in theOMPclass without use of the
ticketer. It is the only function which uses the secondary step field in the loop counter, and it
returns the entire work allocation for each thread. This function maintains no internal state, so
is reliant on the caller respecting theisLast flag and not trying to request another chunk.

ThegetLoopRuntime() function has the same effect asgetLoopStatic() ,getLoopGuided()
or getLoopBlock() , depending on the user-specified runtime scheduling strategy.

ThesetChunkBlock() ,setChunkGuided() andsetChunkRuntime() methods are
used to set a chunk size for use during scheduling, when none is provided by the user. The first
two methods use sensible defaults, while the latter uses the user-specified size if available, or a
sensible default otherwise.

4.10 Ordering Support

The Orderer class is used to implement the OpenMPordered construct. It stores, as its
state, the next iteration of a loop to be executed. Thereset() method takes a loop counter
value indicating the first iteration of the following loop, and returns the next in a conceptually
infinite list of Orderer’s.

ThestartOrdered() method blocks until the given loop iteration is the next to be executed,
and then returns. ThestopOrdered() method sets the next iteration indicator to the given
value.

TheOMPclass maintains for each thread a reference to anOrderer . ThestartOrderer()
and stopOrdered() methods pass their parameters on to the appropriate methods of the
relevantOrderer .

TheresetOrderer() method advances the thread’s reference to point to the nextOrderer ,
setting up the value of the first iteration if it is not already set. When all threads have advanced
past anOrderer , no reference to the object remains, and so it will be available for garbage
collection.

4.11 Locks

TheLock andNestLock classes described in Section 2.15 are implemented in a straightfor-
ward manner, using the Javasynchronized method modifier to provide mutual exclusion.

EPCC-SS99-05 18

4.12 Critical Regions

The requirement that names of critical regions be global in scope presents a problem. OpenMP
directives are to be replaced by Java code, so we need some construct in Java which allows us
to access the same lock regardless of the current scope.

One approach would be to create a publicclassfor each critical region name, in a predetermined
place in the class hierarchy — sayjomp.runtime.critical . Such a class would have
static members to facilitate locking. However, the requirement imposed by Java compilers that
such classes occupy a predetermined place in the directory structure may cause problems. Quite
apart from the obvious messiness, there is no guarantee that the user will have permission to
write to the appropriate location!

Instead, we choose a neater if less efficient solution. TheOMPclass maintains, as a static
member, a hash table, indexed by name and containing, for each name, an instance of class
NestLock . ThegetLockByName() method returns a reference to the lock associated with
a given name, creating it and adding it to the hash table if necessary. Thus, we can think of the
table as containing a lock for every possible name.

In parallel mode, the publicstartCritical() andstopCritical() methods get the
appropriate lock, and attempt to set it and release it, respectively. In serial mode, both functions
simply return with no effect.

5 The JOMP Compiler

In this section, we describe a simple compiler which implements a large subset of the OpenMP
specification suggested above.

5.1 Mode of Operation

The JOMP Compiler is built around a Java 1.1 parser provided as an example with the JavaCC
[1] utility. JavaCC comes supplied with a grammar to parse a Java 1.1 program into a tree,
and anUnparseVisitor class, which unparses the tree to produce code. The bulk of the
compiler is implemented in theOMPVisitor class, which extends theUnparseVisitor
class, overriding various of the methods which unparse particular nonterminals.

These overriding methods output modified code, which includes calls to the runtime library to
implement appropriate parallelism.

5.2 The Symbol Table

The compiler needs to keep track of the types of local variables which are in scope. This is
accomplished by means of aSymbolTable class, an instance of which is available as a static
member of theOMPVisitor class. Conceptually, a symbol table is a stack ofscopes, each of
which contains a set of zero or moreentries. Entries within a scope are uniquely identified by
their names, and also contain fields for further information, such as variable type signatures.

EPCC-SS99-05 19

The symbol table has four operations. A new scope can becreatedon the top of the stack.
Entries can beaddedto the uppermost scope on the stack. Entries can beretrievedby name,
from the uppermost scope in the stack which contains that name. The uppermost scope can be
deleted, removing from the table all entries added since the last scope was created.

Maintaining the symbol table requires overriding the visitors relating to several nonterminals.
TheMethodDeclaration , Block andForStatement visitors are overridden to create
new scopes to hold method parameters, locally declared variables and loop counters respec-
tively. TheLocalVariableDeclaration andFormalParameter visitors are overrid-
den to add names to the table.

5.3 Personal Identity Revisited

As discussed in Section 4.2, there is no cheap way for a thread to identify itself. To alleviate this
problem, the compiler creates code which attempts to keep track of its own ID, in the variable
__omp_me.

Where__omp_meis not in scope, and library calls are inserted which might entail in multiple
calls togetAbsoluteID() , code is inserted to declare__omp_meand initialise it to the
value returned by a call togetAbsoluteID() . The isMeDefined flag is set in the com-
piler, to provide information for visitors within the static scope of the new declaration. Where a
library call would entail a single call togetAbsoluteID() , the value of__omp_meis used
if available.

For simplicity, these technicalities are largely ignored in the sections that follow, and all library
calls are shown without their thread number parameters.

5.4 Theparallel directive

Upon encountering aparallel directive within a method, the compiler creates a new inner
class, within the class containing the current method. If the method containing theparallel
directive isstatic then the inner class is alsostatic .

For each variable declared to beshared , the inner class contains a field of the same type sig-
nature and name. For each variable declared to befirstprivate , the inner class contains
a field of the same type signature, named__omp_fptemp_<varname> . For each variable
with a reduction operation specified, the inner class contains a field of the same type signa-
ture, named__omp_lptemp_<varname> .

The inner class has a single method, calledgo , which takes a parameter indicating an absolute
thread identifier. For each variable declared to beprivate or firstprivate , thego()
method declares a local variable with the same name and type signature.firstprivate vari-
ables are initialised from the corresponding field in the containing inner class, whileprivate
variables are uninitialised.

The main body of thego() method is the code to be executed in parallel. It is not necessary
to make any changes to this block, other than to implement such work-sharing directives as
may be found within it. The use of an inner class, and the declaration of appropriate local and
class variables, effectively recreates the naming environement in which the code was originally

EPCC-SS99-05 20

located, so no modification is required to variable names. Finally, there is some code to perform
any reductions, and to copy the resulting values into the appropriate class fields.

In place of the parallel construct itself, code is inserted to declare a new instance of the inner
class, and to initialise the fields within it from the appropriate local variables. TheOMP.doParallel()
method is used to execute thego method of the inner class in parallel. Finally, any values nec-
essary are copied from class fields, back into local variables.

5.5 Thefor directive

Upon encountering afor directive, the compiler inserts code to create twoLoopData struc-
tures. One of these is initialised to contain the details of the whole loop, while the other is used
to hold details of particular chunks. The generated code then repeatedly calls the appropriate
getLoop...() function for the selected schedule, executing the blocks it is given, until there
are no more blocks. If a dynamic scheduling strategy was used, the ticketer is then reset. Any re-
ductions are carried out, and if thenowait clause is not specified, thedoBarrier() method
is called.

5.6 Theordered clause and directive

If the ordered clause is specified on afor directive, then a call toresetOrderer() is
inserted immediately prior to the loop, when the value of the first iteration number is definitely
known.

Upon encountering anordered directive, the compiler inserts a call tostartOrdered()
before the relevant block with the parameter being the current value of the loop counter. After
the block is inserted a call tostopOrdered() , with the parameter being the next value the
loop counter would takeafter its current value, during sequential execution.

jomp.runtime.OMP.startOrdered(i);
<block>
jomp.runtime.OMP.stopOrdered(i+step);

5.7 Thecritical directive

Upon encountering acritical directive, the compiler inserts a call tostartCritical()
before the relevant block, and a call tostopCritical() after the block.

jomp.runtime.OMP.startCritical("name");
<block>
jomp.runtime.OMP.stopCritical("name");

5.8 Thebarrier directive.

Upon encountering abarrier directive, the compiler inserts a call to thedoBarrier()
method.

EPCC-SS99-05 21

5.9 Themaster directive

Upon encountering amaster directive, the compiler inserts code to execute the relevant block
if and only if theOMP.getThreadNum() method returns 0.

if(jomp.runtime.OMP.getThreadNum()==0) {
<block>

}

5.10 Thesingle directive

Upon encountering asingle directive, the compiler inserts code to get a ticket, execute the
relevant block if and only if the ticket is zero, and then reset the ticketer. If thenowait clause
is not specified, thedoBarrier() method is called.

if(jomp.runtime.OMP.getTicket()==0) {
<code block>

}
jomp.runtime.OMP.resetTicket();
[jomp.runtime.OMP.doBarrier();]

5.11 Thesections directive

Upon encountering asections directive, the compiler inserts code which repeatedly requests
a ticket from the ticketer, and executes a different section depending on the ticket number.
When there are no sections left, the ticketer is reset. If thenowait clause is not specified,
thedoBarrier() method is called.

some_label : for(;;) {
switch(jomp.runtime.OMP.getTicket()) {

case 0 : <section 0>; break;
case 1 : <section 1>; break;
case 2 : <section 2>; break;
default : break some_label;

}
}
jomp.runtime.OMP.resetTicket();
[jomp.runtime.OMP.doBarrier();]

6 JOMP in Practice

The time available for the project has not permitted extensive testing, but JOMP has been applied
to the Java Grande Forum Monte Carlo Benchmark. This is a financial simulation, using Monte
Carlo sampling techniques.

EPCC-SS99-05 22

The main loop of the program consists of 10000 iterations. Each iteration consists of a large
calculation, capable of concurrent execution, and the writing of the resulting data, which must
not overlap (but need not be ordered). The loop before parallelisation is:

results = new Vector(nRunsMC);
// Now do the computation.
PriceStock ps;
for(int iRun=0; iRun < nRunsMC; iRun++) {

ps = new PriceStock();
ps.setInitAllTasks(initAllTasks);
ps.setTask(tasks.elementAt(iRun));
ps.run();
results.addElement(ps.getResult());

}

The following changes instruct JOMP to parallelise the main loop, while ensuring that the
addElement() method of theresults vector is not calls by more than one thread at once.
The referenceps is declared to be private, since each thread will need its own copy. The refer-
enceresults is a class field rather than a local variable, and so is automatically shared.

results = new Vector(nRunsMC);
// Now do the computation.
PriceStock ps;
//omp parallel for private(ps) schedule(static)
for(int iRun=0; iRun < nRunsMC; iRun++) {

ps = new PriceStock();
ps.setInitAllTasks(initAllTasks);
ps.setTask(tasks.elementAt(iRun));
ps.run();
//omp critical
{

results.addElement(ps.getResult());
}

}

When tested on a Sun E3500/8 UltraSPARC, the original serial code took 80.46 seconds, the
parallel code on one processor took 81.02 seconds, and the parallel code on all eight processors
took 12.23 seconds. This represents a speedup factor of 6.58, and an efficiency of 82.2%.
Similar results were obtained when the same code was parallelised by hand [8].

7 Outstanding Issues

In this section, we briefly outline some of the outstanding issues which have yet to be resolved,
and which require more work.

EPCC-SS99-05 23

7.1 Exception Handling

Exceptions are an important feature of the Java language, and it is worth considering how they
will be handled by an OpenMP implementation. Exceptions are present in C++, but they are less
widely used than in Java and the C++ OpenMP specification ignores the issue, thus providing
no guidance.

The case of interest is that where an exception is thrown by some thread within a parallel con-
struct, but not caught inside it. If an exception thrown from within the dynamic extent of a
parallel region, but not caught within it, the most natural behaviour would be for parallel execu-
tion to terminate immediately, and the exception to be thrown on in the enclosing serial region
by the master thread.

This has been attempted in the JOMP preprocessor and library. Thethrows clause on the
parallel directive is used to specify classes of exception which may be thrown from within
the dynamic extent of the parallel construct, but not caught inside it. In practice, though, the
desired behaviour proves very difficult to implement. It is necessary that the thread throwing
the exception has some way of interrupting the master thread. Unfortunately, no mechanism is
provided in the Java language for interrupting a running thread. TheThread.interrupt()
method only actually interrupts if the target thread is waiting. If it is running, it merely sets a
flag.

Even more complex issues arise when an exception is thrown by one thread within a synchro-
nisation or work-sharing construct, and caught outside this construct butinsidethe dynamically
enclosing parallel region.

7.2 Flush and the Java Memory Model

The Java memory model specification [6] is very complex. At the time of writing there are some
doubts about whether it says what the authors intended, and whether it is correctly implemented
by the majority of existing compilers. [11]

For these reasons, and for want of time, I have refrained from considering in detail the memory
model. In particular, I have not implemented theflush directive, or given consideration to
whether there need to be implicit flush operations after or during certain constructs.

At some point, preferably when the issues raised by [11] have been satisfactorily resolved, more
investigation of this matter would be helpful.

7.3 Error Handling

The current JOMP preprocessor has no error handling worth speaking of. Many directive errors
and virtually all errors in the underlying code cause an exit with a stack dump. In practice, it
is necessary to ensure that a program compiles correctly with the sequential compiler before
attempting to run the JOMP preprocessor on it.

EPCC-SS99-05 24

7.4 Efficiency Issues

While some thought has been given to the efficiency of the mechanisms used in the runtime
library and the code generated by the preprocessor, the time available has not permitted extensive
comparison of alternative approaches. Significant savings could almost certainly be made by
improvements in this area.

8 Conclusion

A possible specification for Java OpenMP has been presented, and some of the issues surround-
ing it discussed. A preprocessor and library have been implemented which together utilise Java’s
native threads model to implement a large subset of the proposed specification.

Some issues still require further consideration. In particular, the handling of exceptions and
the implications of the Java memory model will need to be examined in more depth. However,
it is hoped that with the resolution of these issues, Java OpenMP will prove a useful tool for
programmers of high performance computers.

Acknowledgements

Thanks are due to my supervisor, Mark Bull, and to the other staff at EPCC. I am also indebted
to my fellow SSP students — Alexander, Alexandros, Benoit, Daniel, Jo, Klaus, Mark, Robert,
Tom and Wing-yun — for helping in ways too numerous to mention.

Java and JavaCC are trademarks of Sun Microsystems, Inc.

References

[1] JavaCC page. http://www.suntest.com/JavaCC/.

[2] OpenMP Architecture Review Board.OpenMP Fortran Application Program Interface,
October 1997.

[3] OpenMP Architecture Review Board.OpenMP C and C++ Application Program Inter-
face, October 1998.

[4] Thomas W. Christopher and George K. Thiruvathukal. Introduction to high-performance
Java computing, June 1999. Teaching slides.

[5] David Flanagan.Java in a Nutshell. O’Reilly, 1997.

[6] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification, chapter 17.
Addison-Wesley, 1996.

[7] Dirk Grunwald and Suvas Vajracharya. Efficient barriers for distributed shared memory
computers.Univ. Colarado Technical Report CU-CS-703-94-93, September 1993.

[8] Alexandros Karatzoglou. Developing a parallel benchmarking suite for Java Grande ap-
plications. SSP project report, Edinburgh Parallel Computing Centre, 1999.

EPCC-SS99-05 25

[9] Doug Lea.Concurrent Programming in Java: Design Principles and Patterns. Addison-
Wesley, 1997.

[10] Scott Oaks and Henry Wong.Java Threads. O’Reilly, 1997.

[11] W. Pugh. Fixing the Java memory model. pages 89–98. ACM Java Grande Conference,
June 1999.

Mark Kambites is currently studying for an Masters of Mathematics degree in Mathematics and Com-
puter Science, at the University of York.

This project was supervised by Dr. Mark Bull.

