
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

EPCC-SS99-06

Developing a parallel benchmarking suite for Java Grande applications

Alexandros Karatzoglou

Abstract

A Grandeapplication is one which requires large amounts of processing, I/O, network
bandwidth, or memory.Grandeapplications include computational science and engineer-
ing codes, as well as large scale database applications, business and financial models. In-
creasing interest is being shown in the use of Java forGrandeapplications. The purpose of
developing a parallel benchmarking suite is to provide ways of measuring and comparing
alternative Java parallel execution environments in ways which are important toGrande
applications.

EPCC-SS99-06 2

1 Introduction

1.1 Grande Applications

A Grande Applicationis defined [3] as an application of large-scale nature, potentially requiring
large amounts of processing power, network bandwidth, I/O, and memory.Grandeapplications
often rely on parallel execution environments to provide the necessary computational power.
Several categories, can be used to describeGrande Applications

� High Performance Network Computing

� Scientific and Engineering Computations

� Distributed Modelling and Simulation (as in DoD DMSO activities)

� Parallel and Distributed Computing

� Data Intensive Computing

� Communication and Computing Intensive Commercial and Academic Applications

� Computational Grids (e.g., Globus and Legion)

Examples ofGrande Applicationare:

� Commercial: Data-mining, Financial Modelling, Oil Reservoir Simulation, Seismic Data
Processing, Vehicle and Aircraft Simulation

� Government: Nuclear Stockpile Stewardship, Climate and Weather prediction, Satellite
Image Processing, Forces Modelling

� Academic: Fundamental Physics (particles, relativity, cosmology), Biochemistry, Envi-
ronmental Engineering, Earthquake Prediction

� Cryptography: The recent DES-56 challenge presents an interesting Grande Applica-
tion.

1.2 Java in Large Scale Applications

With the increasing popularity of Java comes a growing range of uses for the language that fall
well outside its original design specifications. Increasing interest is being shown in the use of
Java forGrandeapplications.

Java has the greatest potential to deliver an attractive productive programming environment
spanning the very broad range of tasks needed by the Grande programmer. Java promises a
number of breakthroughs that have eluded most technologies thus far. Specifically, Java has the
potential to be written once and run anywhere. This means, from a consumer standpoint, that a
Java program can be run on virtually any conceivable computer available on the market. While
this could be argued for C, C++, and FORTRAN, true portability has not been achieved in these
languages, save by expert-level programmers.

Java also offers a series of advanced programming features like ,object orientation, built in
support for multi-threading and network programming and easy of use. All these features make
the language suitable for use inGrandeapplications. Despite concerns about performance and
numerical definitions an increasing number of users are using Java for large scale codes.

EPCC-SS99-06 3

1.3 The Benchmark Suite

The aim of this work is to develop a standard parallel benchmarking suite which can be used to
:

� Compare different parallel execution environments and thus allowingGrandeusers to
make informed decisions about which environments are most suitable for their needs

� Demonstrate the use of Java for parallelGrande applications. Show that real large scale
parallel codes can be written and provide the opportunity for performance comparison
against other languages.

� Expose those features of the parallel execution environments critical to Grande Appli-
cations and in doing so encourage the development of the environments in appropriate
directions.

1.4 Related work

A considerable number of serial benchmarks and performance tests for Java are available. Some
of these consist of small applets with relatively light computational load, designed mainly for
testing JVMs embedded in browsers. These are of little relevance to Grande applications in
parallel execution environments. Of more interest are the benchmarks [1] which focus on deter-
mining the performance of basic operations such as arithmetic, method calls, object creation and
variable accesses. These are useful for highlighting differences between Java environments, but
give little useful information about the likely performance of large application codes in parallel
environments.

Other sets of benchmarks, from both academic and commercial sources, consist primarily of
computational kernels, both numeric and non-numeric. This type of benchmark is more reflec-
tive of application performance, though many of the kernels in these benchmarks are on the
small side, both in terms of execution time and memory requirements. Finally there are some
benchmarks which consist of a single, near full-scale, application. These are useful in that they
are representative of real codes, but it is virtually impossible to say why performance differs
from one environment to another.

Few benchmark codes attempt inter-language comparison. In those that do, the second language
is usually C++, and the intention is principally to compare the object oriented features.

2 The Benchmarking suite

2.1 Characteristics

For a benchmark suite to be successful, it should be:

� Representative: The nature of the computation in the benchmark suite should reflect the
types of computation which might be expected in Java Grande applications. This implies
that the benchmarks should stretch Java environments in terms of CPU load, memory
requirements, I/O, network and memory bandwidths.

EPCC-SS99-06 4

� Interpretable: As far as possible, the suite as a whole should not merely report the per-
formance of a Java environment, but also lend some insight into why a particular level of
performance was achieved.

� Robust: The performance of the suite should not be - sensitive to factors which are of
little interest (for example, the size of cache memory, or the effectiveness of dead code
elimination).

� Portable: The benchmark suite should run on as wide a variety of Java environments as
possible.

� Standardised: The elements of the benchmark should have a common structure and a
common ‘look and feel’. Performance metrics should have the same meaning across the
benchmark suite.

� Transparent: It should be clear to anyone running the suite exactly what is being tested.

2.2 The Benchmark Sections

The Benchmarking Suite consists of three types of benchmarks, reflecting the classification of
existing benchmarks : low level parallel operations (Section I), simple kernels (Section II) and
applications (Section III).

� Section I : The low-level parallel operation benchmarks have been designed to test the
performance of the low level parallel operations which will ultimately determine the per-
formance of real applications running under the Java parallel environment. Examples
include barrier operations, Join operations, calling synchronised methods and starting
threads .

� Section II : The kernel benchmarks are chosen to be short codes, executed in parallel,
(multi-threaded) each containing a type of computation likely to be found in Grande ap-
plications, for example: LU Factorisation, matrix multiplication.

� Section III : The application benchmarks are intended to be representative of Grande
applications, decomposed and suitably modified for inclusion in the benchmark suite by
removing any I/O and graphical components.

The suite is robust,because it avoids dependences on particular data sizes by offering a range of
data sizes for each benchmark in Sections II and III. It also takes care to defeat possible compiler
optimisation of strictly unnecessary code. For Sections II and III this is achieved by validating
the results of each benchmark, and outputting any incorrect results. For Section I, even more
care is required as the operations performed are rather simple. Some common tricks, used to
fool compilers into thinking that results are actually required, may fail in interpreted systems
where optimisations can be performed at run time.

For maximum portability, as well as ensuring adherence to standards, there are no graphical
components in the benchmark suite. While applets provide a convenient interface for running
benchmarks on workstations and PCs, this is not true for typical supercomputers where interac-
tive access may not be possible. Thus the suite is restricted to simple file I/O.

For standardisation a JGFBenchMark class is used in all benchmark programs. Transparency is
achieved by distributing the source code for all the benchmarks. This removes any ambiguity in
the question of what is being tested.

EPCC-SS99-06 5

2.3 Performance Metrics

The performance metrics for the benchmarks are represented in two forms: execution time and
temporal performance [1]. The execution time is simply the wall clock time required to execute
the portion of the benchmark code which comprises the ‘interesting’ computation,initialisation,
validation and I/O are excluded from the time measured. For portability reasons, the Sys-
tem.currentTimeMillis method from the Java.lang package is used. Millisecond resolution is
less than ideal for measuring benchmark performance, so care must be taken that the run-time
of all benchmarks is sufficiently long that clock resolution is not significant.

Temporal performance is defined in units of operations per second, where the operation is cho-
sen to be the most appropriate for each individual benchmark. For example, choosing floating
point operations are appropriate linear algebra benchmark, but this would be inappropriate for
a Fourier analysis benchmark which relies heavily on calls to transcendental functions. For
some benchmarks, where the choice of most appropriate unit is not obvious, there are more than
one operation units. For the low-level benchmarks (Section I) only temporal performance is
reported. For other benchmarks (Sections II and III) both execution time and temporal perfor-
mance are reported.

2.4 The JGF Benchmark API

The API developed by theEPCC for the benchmark class is described below [1]:

public class JGFBenchMark{

//No constructor

//Class methods

public static syncronized void addTimer(String Name);

public static syncronized void addTimer(String Name,String
opname);

public static syncronized void add Timer(String Name);

public static syncronized void stopTimer(String Name);

public static syncronized void addOpsToTimer(String Name, douple
Count);

public static syncronized double readTimer(String Name);

public static syncronized void resetTimer(String Name);

public static syncronized void printTimer (String Name);

public static syncronized void printperfTimer (String Name);

public static syncronized void storeData(String Name, Object
obj);

public static syncronized void retrieveData(String Name, Object
obj);

EPCC-SS99-06 6

public static syncronized void printHeader (int section, int
size);

}

addTimer creates a new timer and assigns a name to it. The optional second argument assigns
a name to the performance units to be counted by the timer.startTimer andstopTimer turn the
named timer on and off. The effect of repeating this process is to accumulate the total time for
which the timer was switched on.addOpsToTimer adds a number of operations to the timer:
multiple calls are cumulative.readTimer returns the currently stored time.resetTimer resets
both the time and operation count to zero.printTimer prints both time and performance for the
named timer;printperfTimer prints just the performance.storeData andretrieveData allow
storage and retrieval of arbitrary objects without, for example, the need for them to be passed
through argument lists. This is useful, for example, for passing iteration count data between
methods without altering existing code.printHeader prints a standard header line, depending
on the benchmark Section and data size passed to it.

The use of an interface to standardise the form of the benchmark is shown below.

public interface JGFSection2 {
public void JGFsetsize(int size);
public void JGFinitialize();
public void JGFkernel();
public void JGFvalidate();
public void JGFtiydup();
public void JGFrun(int size);

}

The interface for the Section II benchmarks is shown here. The interface for Section III is
similar, while that for Section I is somewhat simpler. To produce a conforming benchmark, a
new class is created which extends the lowest class of the main hierarchy in the existing code
and implements this interface. The JGFrun method should call JGFsetsize to set the data size,
JGFinitialise to perform any initialisation, JGFkernel to run the main (timed) part of the bench-
mark, JGFvalidate to test the results for correctness, and finally JGFtidyup to permit garbage
collection of any large objects or arrays. Calls to JGFBenchmark class methods can be made
either from these methods, or from methods in the existing code, as appropriate.

3 The Benchmarks

3.1 Java Threads

The decomposition of the Benchmarks code was done by the use of Java nativethreads[2]
[4]. The individual threadscary out equal part of the computation and are equally distributed
between processors on shared memory machines by the operating system. In writing the parallel
benchmarking suite the following approach has been taken: The code to be executed by each
thread is separated into a class which implements a Runnable interface. The run() method of
the class is were the execution of the threads code starts. Other methods required are included
in the class. A typical example of such a class follows.

class BenchRunner implements Runnable {

EPCC-SS99-06 7

int id;

public BenchRunner(int id){
this.id=id;

}

public void run() {
for(int i=L;i<H;i++)
calculate();

}

public double calculate(){
}

}

In order to create a separate thread, an instance of the BenchRunner class is needed. The created
object is then passed to constructor of the Thread class. For example:

public class JGFBench {
public static void main {

Runnable rn = new BenchRunner(1);
Thread th = new Thread(rn);
th.start;

}
}

The newthreadobject’s start() method is called to begin execution of the newthread. The id
and other data needed by thethread are passed to it. Parameters (arrays, variables, objects,
etc) passed to the thread are passed by reference and treated as shared data among thethreads.
Public static class variables are also considered as shared data and used in some benchmarks as
reduction variables. The threads own class and method variables are private data of thethread.

3.2 Section I Benchmarks

The Section I benchmarks measure the performance oflow level parallel operations. They are
simple parallel operations repeated long enough to be appropriately timed.

Thread Measures the time spend to start a thread. Performance measures are in threads per
second. In this benchmark we start a number of threads measure the time spend and
divide the total number of threads started by the time spend.

Join Measures the time spend to Join (stop) the threads. Performance measures are in Join
operations per second. In this benchmark threads are started and joined a number of
times, only the time spend to Join the threads is actually measured.

Barrier Measure the performance of a barrier operation. Performance measures are in Barrier

EPCC-SS99-06 8

operations per second. In this benchmark the threads call repeatedly a barrier and the time
spend by the threads is measured.

Synchronised A number of calls to a synchronised method from several threads is compared
to the same total number of calls from one thread to a non-synchronised method. Perfor-
mance measures are in calls per second.

3.3 Section II

The benchmarks in section II are kernel benchmarks each containing a computation likely to be
found in Grande Applications. The decomposition of these benchmarks which originally where
serial (JavaGrande Benchmarking Suite v2.0) is mainly based in spiting the main loop of the
program equally among the threads and using barriers and synchronised statements wherever
needed. The speedup graphs are produced by running the small size (A) benchmarks on an 8
CPU SUN E3500 machine using the 1.1.6 SUN SDK.

Series Series computes the first N Fourier coefficients of the functionf(x) = (x + 1)x on the
interval (0,2). Performance units are coefficients per second. This benchmark heavily
uses transcendental and trigonometric functions. A graph showing the speedup of the
parallel version of the code is illustrated below.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of threads

LU Factorisation LU Factorisation solves an NxN linear system using LU factorisation fol-
lowed by a triangular solve. This is a Java version of the well known Linpack benchmark.
Performance units are Mflops per second. This benchmark is memory and floating point
intensive. This benchmark was only partially decomposed. The Gaussian elimination
is part of the computation performed and is decomposed, the rest of the computation is
inherently serial. The speedup graph is shown below.

EPCC-SS99-06 9

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Crypt Crypt Performs IDEA (International Data Encryption Algorithm) encryption and de-
cryption on an array of N bytes. Performance units are bytes per second. Bit/byte oper-
ation intensive. The speedup of the code is shown below. The code scales bad probably
because of memory conflicts.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

SOR The SOR benchmark performs 100 iterations of successive over-relaxation on a NxN grid.
The performance reported is in iterations per second.The speedup of the code is shown
below. The code is scaling super-linear probably because of cache effects.

EPCC-SS99-06 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Sparse This benchmark uses an unstructured sparse matrix stored in compressed-row format
with a prescribed structure. This kernel exercises indirection addressing and non-regular
memory references. A N x N sparse matrix is used for 200 iterations. The speedup of this
code is about 1.2 on all number of processors probably heavy memory access..

3.4 Section III

The section III benchmarks are application benchmarks intended to be representative of Grande
applications, suitably modified for inclusion in the benchmark suite by removing any I/O and
graphical components. The same approach as in the section II benchmarks has been taken into
decomposing the existing code.

Monte Carlo This benchmarks is a financial simulation, using Monte Carlo techniques to price
products derived from the price of an underlying asset. The code generates N sample time
series with the same mean and fluctuation as a series of historical data. Performance is
measured in samples per second. The speedup of the code is shown below.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Ray Tracer This benchmark measures the performance of a 3D ray tracer. The scene rendered

EPCC-SS99-06 11

contains 64 spheres, and is rendered at a resolution of NxN pixels. The performance is
measured in pixels per second.

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

4 Comparing Java with C

Part of this project was also the translation of some Java benchmarks into C in order to compare
the performance of the two languages. The Series and the Sparse benchmark was translated into
C. The LU Factorisation (Linpack) already existed in C. The results are shown in figure X. The
Java code was run on the JDK 1.1.6 using optimisation (-O) and the C code was compiled with
the native Solaris compiler (cc) using optimisation -xO4.

5 Conclusions

The creation of the parallel benchmarking suite demonstrates the use of Java in Grande appli-
cations. The Java language proved to be easy to use in writing parallel code. The performance

EPCC-SS99-06 12

comparison between C and Java shows that the Java has still potential for improvement. In
particular the floating point performance of the language needs to be improved.

References

[1] J.M. Bull, L A. Smith, M. D. Westhead, D.S. Henty, and R. A. Davey. A Methodology for
Benchmarking Java Grande Applications. EPCC, June 1999.

[2] Scott Oaks and Henry Wong. Java Threads. O’Reilly, January 1997.

[3] Java Grande Forum Panel. Making Java Work for High end Computing. www, November
1998.

[4] SUN. http://java.sun.com. www, August 1999.

Alexandros Karatzoglou is studying Physics at the Aristotle University of
Thessaloniki Greece. Currently he is working on his diploma thesis on Neural
Networks at the Katholieke Universiteit Leuven in Belgium.

Supervisors: Lorna Smith, Douglas Smith

