
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

EPCC-SSP / summer 1999

Intersim Project

Benoît Mordelet

Abstract

The Intersim project aims to simulate Internet in order to understand scaling properties
of protocols and routing algorithms. However, networks are growing in size and detailed
modelling of modern IP networks can be computationally intensive. Efficient design of to-
morrow’s communications networks represents a crucial challenge for telecommunications
companies world-wide. With the continued explosive growth of the Internet it is clear that
existing simulation technology and hardware testbed systems cannot keep pace.

EPCC-SSP / summer 1999 2

Contents

1 Introduction 3

2 About ns-2 implementation 4
2.1 The source code hierarchy tree . 4
2.2 C++ / oTcl mutual calls mechanisms . 4

2.2.1 Calling oTcl at C++ level. 5
2.2.2 Calling C++ at oTcl level. 6
2.2.3 Making C++ objects visible from oTcl 8

2.3 The network topology implementation .. 11
2.3.1 What oTcl does . 12
2.3.2 A graph of “connectors” . 12
2.3.3 Links anatomy . 13
2.3.4 Nodes anatomy . 14

3 My modifications 16
3.1 Avoiding oTcl calls from C++ . 16

3.1.1 Adding a new application to ns . 17
3.1.2 Modifying the “eval” function . 17

3.2 Maintaining a list of possible shortcuts . 19
3.3 Building a matrix of temporal distances in a network topology. 20

3.3.1 The general case . 20
3.3.2 Building the matrix during ns initialisation. 24
3.3.3 Consulting the matrix. 26

3.4 Making the parallel scheduler to be one of the multiple schedulers of ns. . . . 27
3.5 Debugging the parallel scheduler. 27

3.5.1 Writing thread safe code. 27
3.5.2 Problems encountered. 28

4 Conclusion 29
4.1 The results . 29
4.2 About the SSP 29

EPCC-SSP / summer 1999 3

1 Introduction

� What is Intersim project ? In a few words, Intersim is an EPCC project which is develop-
ing techniques for carrying out large scale simulation of Internet traffic.

� The Intersim project aims to understand scaling properties of protocols and routing algo-
rithms. However, networks are growing in size and detailed modelling of modern IP net-
works can be computationally intensive. Efficient design of tomorrow’s communications
networks represents a crucial challenge for telecommunications companies world-wide.
With the continued explosive growth of the Internet it is clear that existing simulation
technology and hardware testbed systems cannot keep pace.

� This project involved understanding the source code of ns and modifying it in order to
make it run in parallel on a single specific example, FTP traffic. ns is serial code which
was originally written at Berkeley University (USA). Writing a parallel scheduler for ns
(see further to know what a scheduler is in ns) is one of the Intersim’s goals. The example
was chosen for its simplicity.

� My contribution to the project is aimed at showing that a parallelisation of ns is possible.
We are attempting a new strategy aimed at SMP systems (Shared Memory Platform ?).

� This report is then naturally divided into two main parts : what I have understood of
ns-2, and a documentation on the modifications I have done to it. This second part is a
complement to the comments I have put in my C++ code, which I tried to write as clearly
as possible. It is aimed at explaining in details the work I have done, so that somebody
can easily work more on my code if necessary. Notice that every included source code
sample is accompanied with the name of the file which contains it. “...” between two code
lines means that some code has been truncated. I tried to choose key files to extract code
samples.

EPCC-SSP / summer 1999 4

2 About ns-2 implementation

This first main part describes a bit of ns-2 implementation, the only part I needed to under-
stand and sometimes modify to run ns in parallel. It deals with the mutual calls of C++ and oTcl
mechanisms, and how the virtual topology is built and use to simulate data traffic.

Notice that all what is explained in this first part is also “explained” in the official “nsNotes
and Documentation” book. But since I didn’t helped me much during the understanding phase
of my project, I’ll explain it as I would have like to be told. This part describes almost all that I
guessed while analysing the obscure ns-2 source code.

2.1 The source code hierarchy tree

Three directories are particularly interesting in ns-2 source code tree. The tclcl directory con-
tains all the code used two allow C++ / oTcl communications, objects shadowing and variables
binding. The ns-2 directory contains all the C++ code of ns which isn’t in tclcl; that means the
simulator itself code. Finally, the ns-2/tcl/lib directory (and a few files elsewhere) contains the
oTcl code of ns, which is incorporated into the C++ executable (you can find a list of all of them
in the beginning of the ns-lib.tcl file), i.e. defined in a C++ char[], and given to the interpreter
by the C++ code at ns initialisation.

2.2 C++ / oTcl mutual calls mechanisms

Since ns is written in both C++ and oTcl languages, it needs some mechanisms to allow
them to communicate, i.e. calling objects instance procedures and returning results. Here is a
description of the use of those mechanisms. It is useful mainly when you are trying to avoid
oTcl calls in C++ code. Because I don’t need it I won’t explain in detail the implementation of
object shadowing in ns, only the way to call them. You must notice that while being called from
C++, oTcl might (and often does) call C++, and vice versa.

EPCC-SSP / summer 1999 5

Figure 1: Mechanism to call oTcl at C++ level

2.2.1 Calling oTcl at C++ level

The oTcl interpreter as a C++ object The oTcl interpreter is seen from C++ as an object of
the classTcl (figure 1). It is instantiated at ns initialisation and can be accessed like this :

(ns-2/scheduler.cc)

void AtHandler::handle(Event* e)
{

AtEvent* at = (AtEvent*)e;
Tcl::instance().eval(at->proc_); // <- here
delete[] at->proc_;
delete at;

}

Tcl::instance() returns a reference (Tcl &) to the interpreter andeval(at->proc_)
will evaluate the oTcl command stored inat->proc_ .

The eval* functions There are four forms of such eval function :

(tclcl/tclcl.h public part of class Tcl declaration)

/*
* Hooks for invoking the tcl interpreter:
* eval(char*) - when string is in writable store
* evalc() - when string is in read-only store (e.g., string consts)
* evalf() - printf style formatting of command
* Or, write into the buffer returned by buffer() and

EPCC-SSP / summer 1999 6

* then call eval(void).
*/

void eval(char* s);
void evalc(const char* s);
void eval();
char* buffer() { return (bp_); }
/*

* This routine used to be inlined, but SGI’s C++ compiler
* can’t hack stdarg inlining. No big deal here.
*/

void evalf(const char* fmt, ...);

Soeval(char* s) just evaluates the oTcl command stored in s. Since every other eval*
function finally calls it, it’s the only one we really have to take care about. Notice thatevalf
is by far the most called of those functions; all the calls to the other eval* function could be
counted on one hand.

If you expect a result from the interpreter, it can be read using theresult() instance
procedure of the interpreter, like this :

(ns-2/app.cc in the command procedure of the Application class)

Tcl& tcl = Tcl::instance();
...
char result[1024];
sprintf(result, " %s ", tcl.result());

2.2.2 Calling C++ at oTcl level

oTcl code to use a C++ object oTcl doesn’t have to declare anything to use C++ objects
(figure 2). All the shadowing code is done in C++ (I mean the declaration of a new class,
variable, ...). just type the name of the instance you want to use with its arguments on the same
line, space separated (self is the oTcl equivalent of the C++ this pointer) :

(ns-2/tcl/lib/ns-link.tcl)

SimpleLink instproc ttl-drop-trace args {
$self instvar ttl_
if ![info exists ttl_] return
if {[llength $args] != 0} {

$ttl_ drop-target [lindex $args 0]
} else {

$self instvar drophead_ # <- here
$ttl_ drop-target $drophead_ # <- here

}
}

EPCC-SSP / summer 1999 7

Figure 2: Mechanism to call C++ at oTcl level

The class TclObject and its “command” procedure The class TclObject is the C++ base
class of all the shadowed objects. It provides several procedures to bind instance variables and
the most important one :int command(int argc, const char*const* argv) .
this is the function called when oTcl calls the services of that C++ object. The arguments are
given like a program command line.argc is always above or equal to 2 becauseargv[0]
= “cmd”, argv[1] = command name, and with i>=2argv[i] = command argument. The
commandprocedure is supposed to return eitherTCL_OKwhen everything has gone without
any problem, orTCL_ERROR.

The structure of acommandfunction is always the same :

(ns-2/connector.cc)

int Connector::command(int argc, const char*const* argv)
{

Tcl& tcl = Tcl::instance();
/*XXX*/
if (argc == 2) {

if (strcmp(argv[1], "target") == 0) {
if (target_ != 0)

tcl.result(target_->name());
return (TCL_OK);

}
...
}

}

else if (argc == 3) {

EPCC-SSP / summer 1999 8

if (strcmp(argv[1], "target") == 0) {
if (*argv[2] == ’0’) {

target_ = 0;
return (TCL_OK);

}
target_ = (NsObject*)TclObject::lookup(argv[2]);
if (target_ == 0) {

tcl.resultf("no such object %s", argv[2]);
return (TCL_ERROR);

}
return (TCL_OK);

}
...
}
return (NsObject::command(argc, argv));

}

The procedure starts parsing the argc/v parameters to know if the command is one of its own
and execute it, or return the return code of the parent class command function. Such a structure
allows fast and easy addition of commands to a C++ object.

This piece of code also shows the way to give a result string to the interpreter, usingTcl::result(const
char*) or Tcl::resultf(const char*, ...) .

2.2.3 Making C++ objects visible from oTcl

The class TclClass So we now know how to use a C++ object at oTcl level. But we still don’t
know how to tell the interpreter that a particular class has been defined in C++ and can be used
by oTcl. This is done via theTclClass C++ class. Just derive that class and instanciate it as
a global variable in order to call the constructor once, like this :

(ns-2/scheduler.cc)

static class CalendarSchedulerClass : public TclClass {
public:

CalendarSchedulerClass() : TclClass("Scheduler/Calendar") {}
TclObject* create(int /* argc */, const char*const* /* argv */) {

return (new CalendarScheduler);
}

} class_calendar_sched;

This makes the new class usable. It is calledScheduler/Calendar and so is a child class
of Scheduler; this is a name convention used in ns. This also provides a method to create new
instances of that class.

EPCC-SSP / summer 1999 9

Sharing instance variables This is enough to instanciate a new object at oTcl level, but not
to modify an instance variable of that object directly in oTcl. Fortunately, as a derived class of
TclObject your new oTcl-visible object can also share some of its instance variable with the
interpreter. This is done by the bind* functions of the classTclObject :

(tclcl/tclcl.h in the public part of class TclObject declaration)

void bind(const char* var, TracedInt* val);
void bind(const char* var, TracedDouble* val);
void bind(const char* var, double* val);
void bind_bw(const char* var, double* val);
void bind_time(const char* var, double* val);
void bind(const char* var, int* val);
void bind_bool(const char* var, int* val);

You can that way bind integers, doubles and their traced equivalent, but as well, bandwidth
(bw), time duration or boolean :

(ns-2/tcl/lib/ns-default.tcl)

Agent/TCP set seqno_ 0

(ns-2/tcp.cc in TcpAgent constructor)

bind("seqno_", &curseq_);

oTcl is here told thatAgent/TCP has an instance variable calledseqno_ , which default
value is 0, and that can be directly read or modified. And C++ defines (in the bind function) the
way oTcl will use to perform such accesses.

Defining an object half in C++ and half in oTcl With all these ns-2 features we are able to
define some object partly in oTcl and partly in C++. The classAgent is defined like this :

(ns-2/agent.h)

class Agent : public Connector {
public:

Agent(int pktType);
virtual ~Agent();
void recv(Packet*, Handler*);
void send(Packet* p, Handler* h) { target_->recv(p, h); }

...

int command(int argc, const char*const* argv);
protected:

...
nsaddr_t addr_; // address of this agent
nsaddr_t dst_; // destination address for pkt fl o
int size_; // fixed packet size

EPCC-SSP / summer 1999 10

int type_; // type to place in packet header
int fid_; // for IPv6 flow id field
int prio_; // for IPv6 prio field
int flags_; // for experiments (see ip.h)
int defttl_; // default ttl for outgoing pkts

#ifdef notdef
int seqno_; /* current seqno */
int class_; /* class to place in packet header */

#endif

static int uidcnt_;
int off_ip_;

...
};

(ns-2/agent.cc)

static class AgentClass : public TclClass {
public:

AgentClass() : TclClass("Agent") {}
TclObject* create(int, const char*const*) {

return (new Agent(-1));
}

} class_agent;

...

Agent::Agent(int pkttype) :
size_(0), type_(pkttype),
channel_(0), traceName_(NULL),
oldValueList_(NULL), app_(0)

{
off_ip_ = hdr_ip::offset();

#if defined(TCLCL_CLASSINSTVAR)
#else /* ! TCLCL_CLASSINSTVAR */

/*
* the following is a workaround to allow
* older scripts that use "class_" instead of
* flowid to work -K
*/

bind("class_", (int*)&fid_);

// memset(pending_, 0, sizeof(pending_));
// this is really an IP agent, so set up
// for generating the appropriate IP fields...
bind("addr_", (int*)&addr_);
bind("dst_", (int*)&dst_);

EPCC-SSP / summer 1999 11

bind("fid_", (int*)&fid_);
bind("prio_", (int*)&prio_);
bind("flags_", (int*)&flags_);
bind("ttl_", &defttl_);

#ifdef OFF_HDR
bind("off_ip_", &off_ip_);

#endif
#endif /* TCLCL_CLASSINSTVAR */
}

(ns-2/tcl/lib/ns-agent.tcl)

#
Lower 8 bits of dst_ are portID_. this proc supports setting the interval
for delayed acks
#
Agent instproc dst-port {} {

$self instvar dst_
return [expr $dst_%256]

}

#
Add source of type s_type to agent and return the source
Source objects are obsolete; use attach-app instead
#
Agent instproc attach-source {s_type} {

set source [new Source/$s_type]
$source attach $self
$self set type_ $s_type
return $source

}

If you want to define such mixed class, you have to declare it as usual in C++, make the class
visible from oTcl, and bind all the instance variables you want to use in oTcl. Then you can add
some procedures in oTcl, but of course you have to use the explicit C++_calls_oTcl mechanism
in order to use it from C++.

2.3 The network topology implementation

This second half of the first part describes how the network topology is implemented, and
where the different events are inserted to be simulated. It is useful mainly when you are trying
to build a conflict checking procedure for the parallel scheduler. We consider here only unicast
nodes and simple links.

EPCC-SSP / summer 1999 12

2.3.1 What oTcl does

oTcl has to build the whole topology at ns initialisation. All the topology objects are C++
object and so are instantiated using the overloaded create function of the classTclClass . But
oTcl links them (i.e. sets the pointers between them) and chooses the different ingredients : what
type of classifier, queue, delay, ... it also initialises the different transport agents (i.e. protocols, I
have only usedAgent/TCP) and Applications (FTP (the only one I have used), Telnet, ...) and
attach them together and to the specified nodes. It is the part of oTcl we want to keep because
of the facilities it gives to the user to define the topology.

2.3.2 A graph of “connectors”

The base class for all components of the physical network (i.e. nodes and links, not agents
or applications) is theConnector class. So the network topology can be seen as a graph of
Connectors with one-way links between them.

Root classes of a Connector The classConnector is derived from the classNsObject ,
which is derived fromTclObject (which allows object shadowing) andHandler . To be of
type Handler means that it can treat an given event to simulate it. The classesNsObject
andConnector also add their own procedures and variables.

Main instance variables and procedures The NsObject class adds therecv procedure
which will define an object behaviour when it receives a packet. Thehandle procedure is over-
loaded and simply gives the packet of an event to therecv function. The classConnector
main addition is thetarget_ instance variable which allows connector linkage to build the
graph.

EPCC-SSP / summer 1999 13

Figure 3: Anatomy of a link

2.3.3 Links anatomy

A little drawing Here is a description of what a link contains. I’ve added the paths that packets
can follow in the link (figure 3).

Description of the connectors The connectors are linked together via theirtarget_ pointer.
They have two main possible behaviour :

1. drop a packet.

2. send the packet to the next connector, after having modified some fields of the packet
headers (or not).

In both cases the connector can produce new events and tell the scheduler to insert it in the event
queue.

There are eight connectors in a simple link. they are :

1. the enqueue trace. All trace connectors aim at producing one line of the output nam file.
This one trace the arriving of packets in the link.

2. the queue manager. It mainly forwards the packets from the enqueue trace to the packet
queue, or from the packet queue to the dequeue trace.

3. the packet queue. It is an instance variable of the previous one. It stores the waiting
packets and drop some packets when it is full.

4. the drop trace. It traces the packets that are dropped.

5. the dequeue trace. It traces the packets that are dequeued and will continue to the delay
connector.

6. the delay. Given a packet, the delay connector schedule a new event which will occur in
the ttl checker at current time + delay of the link.

EPCC-SSP / summer 1999 14

Figure 4: Anatomy of a node

7. the ttl checker. Every packets have a time-to-live variable. Every time the packet goes
through a link it is decreased. If it comes to be null, the packet is dropped. That prevents
packets to travel for eternity in a network.

8. the receive trace. It just traces the arrival of a packet in a node.

All connectors are potential event handlers, but few are really active. Only the packet queue, the
delay connector and the ttl checker could really be used like this. Actually, the delay connector
doesn’t seem to be used in the simulations I ran.

2.3.4 Nodes anatomy

An other little drawing Here is a description of what a node contains. I’ve added the paths
that packets can follow in the node (figure 4.

Description of the componnents A basic node is constituted of two classifiers. They do
the routing in the network topology. They are a bit different than the connectors because their
“ target_ ” is replace by an array of slots where it can store pointers to another classifier, links,
agents, etc...

(ns-2/classifier.h)

class Classifier : public NsObject {
public:

Classifier();
~Classifier();
void recv(Packet* p, Handler* h);
int maxslot() const { return maxslot_; }

EPCC-SSP / summer 1999 15

inline NsObject* slot(int slot) {
if ((slot >= 0) || (slot < nslot_))

return slot_[slot];
return 0;

}
int mshift(int val) { return ((val >> shift_) & mask_); }
NsObject* find(Packet*);
virtual int classify(Packet *const);

protected:
void install(int slot, NsObject*);
void clear(int slot);
int getnxt(NsObject *);
virtual int command(int argc, const char*const* argv);
void alloc(int);
NsObject** slot_; /* table that maps slot number to a NsObject * /
int nslot_;
int maxslot_;
int offset_; // offset for Packet::access()
int shift_;
int mask_;

};

The routing function for static routing is quite short (and fast) :

(ns-2/classifier.cc)

int Classifier::classify(Packet *const p)
{

return (mshift(*((int*) p->access(offset_))));
}

The classifier simply shifts the destination address in the virtual network before masking
some bits to get a slot number. I don’t know precisely howshift_ andmask_ are chosen, but
I know that the route computation is done at ns initialisation. The address contains both a node
number and a port number which is in fact an agent ID number. The first classifier (address
classifier) forwards the packet to the right link if the current node isn’t the destination or to the
second classifier (port classifier) which forwards it to the right agent.

EPCC-SSP / summer 1999 16

3 My modifications

This second part is a detailed explanation of what I have modified in ns. It is aimed at helping
people who might use my code after I leave EPCC, by preventing them from wondering for
hours what I can have tried to do ! The code samples that I have included in this part may of
course be the modified code, and may not match with the original ns-2 code. You will have to
ask for the EPCC modified code hierarchy if you want to examine it in detail.

There are three main sections :

1. How I manage to avoid oTcl calls from C++ (because they can’t be parallelised).

2. How I make ns build a matrix at initialisation to check for events conflict.

3. The problems I had (and still have) with the parallel scheduler itself.

3.1 Avoiding oTcl calls from C++

Because oTcl can’t be parallelised, I first had to avoid oTcl calls from C++ during the sim-
ulation. It is actually quite simple to do. After having a look at those calls I understood that
the at-events are the only ones which require such a call. The at-events are defined in the user’s
script to describe the traffic sources activity :

(ns-2/tcl/ex/tcp-int.tcl)

set ftp($i) [new Application/FTP]
$ftp($i) attach-agent $tcp($i)
$ns at 0.$i "$ftp($i) start" # <- here
...

$ns at 5.0 "finish" # <- and here too

Since we want to simulate FTP traffic, and since the FTP application is written in oTcl we
have to :

1. rewrite the FTP application in C++.

2. send the calls destined to the oTcl FTP application to the C++ one.

Actually, an other type of oTcl call still remains : when stopping, an FTP application receives
the “done” order via oTcl. I don’t know exactly the role of that function and where it is de-
fined, and since I’ve been asked to start another part of ns modification after rewriting the FTP
application, I still don’t know, but I guess it mustn’t be that difficult to avoid it.

EPCC-SSP / summer 1999 17

3.1.1 Adding a new application to ns

To rewrite the FTP application in C++ :

1. “translate” all the oTcl procedures in C++, as instance procedures of a new class derived
from class Application.

2. take care of writing a command procedure which match with the exact current oTcl pro-
cedures names !

3. make it visible from oTcl.

This application naturally sends orders to the TCP agent it is attached to. The underlying
agent is pointed by theagent_ instance variable of theApplication class. You can build
a command string that way and send it toagent_->command(...) . I could have called
the right procedure directly of theTcpAgent class (with rather dirty code), but it would have
failed if somebody one day decide to use an other implementation of the TCP agent. So I have
just emulated what oTcl would have done. My code is stored in the files ns-2/myFTP.h and ns-
2/myFTP.cc (the oTcl version is in ns-2/tcl/ns-source.tcl). The application can be used exactly
like the oTcl version by naming itApplication/myFTP in an ns script.

3.1.2 Modifying the “eval” function

You can now use themyFTPapplication to simulate FTP traffic, but oTcl is still called... and
immediately calls the new C++ objectcommandprocedure. As I said in the first part, it is done
via theTcl::eval(const char*) function. I had to modify that function slightly to call
directly themyFTPapplication :

(tclcl/Tcl.cc)

static int cut(char *s, char **argv)
{

int i=0;
char *p;
char *st = new char[strlen(s)+1];

strcpy(st,s);
p=strtok(st," ");
argv[0] = new char[strlen(p)+1];
strcpy(argv[i++],p);
while (((p=strtok(NULL," ")) != NULL) && (i<MAX_TOKENS))

{
argv[i] = new char[strlen(p)+1];
strcpy(argv[i++],p);

}
return i;

}

void Tcl::eval(char* s)

EPCC-SSP / summer 1999 18

{
TclObject *dest;
int st;
int argc;
char *argv[MAX_TOKENS];

argc=cut(s,argv);

// new Tcl::eval function
dest = Tcl::instance().lookup(argv[0]);
if (tclobjects.get(dest) == PTR_IN)

{
printf("shortcut : \"%s\"",s);
st = dest->command(argc,argv);
if (st != TCL_OK)

{
printf(" failed - calling OTCL\n");
st = Tcl_GlobalEval(tcl_,s);

}
else printf(" OK\n");
for (int i=0; i<MAX_TOKENS; i++) delete []argv;

}
else

{
// printf("OTCL call : %s\n",s);
st = Tcl_GlobalEval(tcl_, s);

}
if (st != TCL_OK) {

int n = strlen(application_) + strlen(s);
char* wrk = new char[n + 80];
sprintf(wrk, "tkerror {%s: %s}", application_, s);
if (Tcl_GlobalEval(tcl_, wrk) != TCL_OK) {

fprintf(stderr, "%s: tcl error on eval of: %s\n",
application_, s);

exit(1);
}
delete[] wrk;
//exit(1);

}

// old Tcl::eval function
...

}

EPCC-SSP / summer 1999 19

A few words of explanation might be necessary (and sorry for not having commented that
function, I realise it now !). Thecut function simply separate the different tokens (space
separated) of a given string. Now theeval function itself :

1. The parameter string match the following pattern : “_o<number> <command> [<argu-
ment> [<argument> ...]]”. _o<number> is the name of the destination of the command
(an oTcl object) in the oTcl namespace. <command> is the command itself : “start”,
“stop”, “detach-agent”, ...

2. Soargv[0] stores the oTcl name of the destination object. A pointer to the C++ shad-
owed object is retrieved with thedest = Tcl::instance().lookup(argv[0]);
line.

3. After testing if the call can be directly sent to C++ (please see the next section for more
detail), thecommandfunction of the C++ object is called, and in case of failure (i.e. if it
doesn’t returnTCL_OK) the interpreter is called.

3.2 Maintaining a list of possible shortcuts

I maintain a list of those objects which can be called directly. Those objects have to “register”
while being instantiated (i.e. in their constructors), and “unregister” while being destroyed (i.e.
in their destructor). This is done using the classptrlist . Since I’ve modified this class please
see the details of the implementation in the paragraph “The ptrlist class” of the next section. It
has been modified to extend its possibilities, but is still compatible with this first use. A global
instance of that class, calledtclobjects is declared in ns-2/ptrlist.cc. The definition of that
class is stored in the files ns-2/ptrlist.h and ns-2/ptrlist.cc.

I’ll describe here the way to use it :

1. To register just use the put procedure.
(ns-2/myFTP.cc)

myFTP::myFTP() : Application()
{

// may receive requests destinated to oTcl
tclobjects.put(this);

}

2. To unregister just use the del procedure.
(ns-2/myFTP.cc)

myFTP::~myFTP()
{

// delete that object from the list to free space and accelerate searches
tclobjects.del(this);

}

3. To check if an object is in the list just call the get function. it return PTR_IN if the given
pointer is in the list or PTR_NOT_IN else.
(tclcl/Tcl.cc)

EPCC-SSP / summer 1999 20

Figure 5: Connecting two networks

if (tclobjects.get(dest) == PTR_IN)
{
...
}

3.3 Building a matrix of temporal distances in a network topology

We can now start thinking about the parallel scheduler itself. It is based on conflict checking
of the different events in the queue. We are sure that two events won’t conflict if their temporal
distance (i.e. difference between their simulation execution time) is shorter than the distance
between the nodes where they take place in the network. We need to compute those distances at
ns initialisation.

3.3.1 The general case

I wrote the code to compute those distances in the general case, and then derived the new
classes to use them in the particular case of ns.

The tempdist_matrix class This class stores the graph of one connected network, and gives
a way to connect two of them or add a new path in the graph. This is where the computations of
the values in the matrix are really implemented. Two different, but both very simple, algorithms
are used to compute the distances between the nodes :

1. We join two disconnected graphs (figure 5) Considering node n1 in graph A and node n2
in graph B we have :

dist(n1; n2) = dist(n1; na) + delay of the new link + dist(nb; n2) (1)

EPCC-SSP / summer 1999 21

Figure 6: Adding a new path in a connected network

2. We only add a new possible path in the graph (figure 6) Considering nodes n1 and n2 the
new distance between them is the minimum of the old distance and the new one calculated
as previously.

There are three important procedure in that class :get , connect and newway (please
have a look at ns-2/tempdist.cc for details). Theindex instance variable is a list that stores
couples (pointer, index in the matrix) because all those three functions consider that the nodes
of the graph are C++ pointers. You can so get the distance between two C++ objects, say obj1
and obj2, usingget(&obj1,&obj2) . The index variable is aptrlist like the one I
use in the modifiedTcl::eval function. please have a look at the second next paragraph for
implementation details of the classptrlist .

(ns-2/tempdist.h)

// "distance" between two unreachable nodes in a graph
#define UNREACHABLE -3.0

// store a connex graph and distances between its nodes
class tempdist_matrix
{

public:

tempdist_matrix() {dim=1; matrix = new double[1]; matrix[0]=0.0;}
tempdist_matrix(void *addr) {dim=1; matrix = new double[1]; matrix[0]=0.0; in d
~tempdist_matrix() {delete []matrix;}

// return the (temporal) distance between two nodes of the graph
inline double get(void *from, void *to) {return matrix[index.get(from)*dim+in d

// compute the new matrix when a new link connect two distinct networks.
// "from" is supposed to be in this matrix, and "to" in the param matrix, els e
void connect(tempdist_matrix m, void *from, void *to, double delay);

// update the matrix when a new link just add an other possible way for packe t

EPCC-SSP / summer 1999 22

void newway(void *from, void *to, double delay);

// for debugging
void print(void);

//private:

int dim; // dimension of the matrix
double *matrix; // the matrix itself
ptrlist index; // the bindings between entries in the matrix and pointers (" f

};

The tm_set class This class only stores a set oftempdist_matrix , and so can store a
non-connected graph. Itsconnect function (please have a look at ns-2/tempdist.cc for details)
distinguishes if the two given nodes are in the same connected subgraph or not (i.e. in the
sametempdist_matrix), and so call the right procedure of its root class (connect or
newway). The get function does the same and if the two nodes are in the same subgraph
return the distance in that graph, orUNREACHABLEelse. Thelist instance variable stores all
the disconnected parts of the graph. Thenewnode function creates a new disconnected part of
the graph, with one node and no link in it.

(ns-2/tempdist.h)

// store a (possibly) non connex graph
class tm_set
{

public :

tm_set() {next_entry=0;}
~tm_set() {list.desfree();}

// add a new 1-matrix to the list.
void newnode(void *node);

// compute the new matrix, when adding a new simple link.
void connect(void *n1, void *n2, double delay);

// get the distance between two nodes.
double get(void *from, void *to);

// for debugging
void print(void);

//private:

// return the number of the matrix in list where node is.
int getnb(void *node);

EPCC-SSP / summer 1999 23

ptrlist list; // store all the connex parts of the graph here
int next_entry; // next matrix number that can be binded to a matrix

};

The ptrlist class That class is a list of elements like this :

(ns-2/ptrlist.h)

// the elements of the list
struct cell
{

cell * next; // next element in the list
void * datap; // pointer data |
int datai; // integer data | we store couples (pointer,integer)

};

It is used as a very simple database of couples (pointer, integer). It has two main uses :

1. In the modifiedTcl::eval procedure, to store what C++ objects can directly receive
calls destined to oTcl. In that case only the pointer field of the elements is important. The
integer field (which didn’t exist in the first version of that class) is simply set toPTR_IN
: (ns-2/ptrlist.cc)

// add a new object in the data base.
// beware : you can really add several times the same couple, and you’ll ha v
// the del function to really erase it.
// add the couple (addr,PTR_IN)
void ptrlist::put(void * addr, char lock)
{

put(addr,PTR_IN,lock);
}

2. In the computation and consultation of temporal distances matrices, it is used to store the
raw number of a given C++ object. (pointer to the object, raw number) is stored.

In both cases all the function have a final argumentlock , which default istrue , which
specify if the mutex locking must be used for thread safety. That is useful to avoid deadlocks
when an instance procedure calls an other one.

The use of theptrlist class is quite easy :

1. Use one of theput procedure to add a couple to the database. Just give a pointer and
(pointer, PTR_IN) will be added or a full couple.

2. Use one of thedel procedure to remove a couple from the database. Just give a pointer
or an integer and the first matching couple in the list will be removed.

EPCC-SSP / summer 1999 24

3. Use one of theget procedure to retrieve a couple from the database. Just give a pointer
or an integer and you’ll get the corresponding other field of the first matching couple in
the list. If no couple matches, the function returnsPTR_NOT_IN.

three other functions are defined.destroy anddesfree will empty the list, and the second
one will delete what is pointed by thedatap field of each element. Theaddcat function
adds a constant integer to thedatai field of every element in the given list and concatenates
the two lists. This last function is used only while computing temporal distances matrices, when
joining two disconnected networks.

3.3.2 Building the matrix during ns initialisation

The possible handlers We compute the distances between the nodes of the network, but most
of the events happen elsewhere (i.e. somewhere in the links). Since the distance between a
part of the link and the nearest node is always null or undefined (you can’t know how long the
packets will wait in the queue). All the active handlers are associated to the nearest node and
have a pointer to it (i.e. to its entry, the address classifier) :

(ns-2/scheduler.h)

/*
* The base class for all event handlers. When an event’s scheduled
* time arrives, it is passed to handle which must consume it.
* i.e., if it needs to be freed it, it must be freed by the handler.
*/

class Handler {
public:

virtual void handle(Event* event) = 0;

//***** ben *****
Handler() {graph_node_p = NULL;}
void ** graph_node_p;
//***** neb *****

};

The oTcl code I have added a few lines to the oTcl code to build the matrix at ns initialisa-
tion, without modifying the user’s script. I use thenode procedure of theSimulator class
to call thenewnode procedure of thenode_dist C++ class, theinit procedure of the
SimpleLink class and thesimplex-link procedure of theSimulator class to call the
connect procedure of thenode_dist C++ class, and theattach-agent procedure of
theSimulator class to set an agent pointer to its node :

(ns-2/tcl/lib/ns-lib.tcl)

Simulator instproc init args {

EPCC-SSP / summer 1999 25

$self create_packetformat
$self use-scheduler Calendar
$self set nullAgent_ [new Agent/Null]
$self set-address-format def

#***** ben *****
$self create_dist-matrix
#***** neb *****

eval $self next $args
}

#***** ben *****
Simulator instproc create_dist-matrix args {

$self instvar dist_matrix_
set dist_matrix_ [new DistNode]

}

Simulator instproc print_mutex_times args {
$self instvar scheduler_
$scheduler_ print

}
#***** neb *****
...
Default behavior is changed: consider nam as not initialized if
no shape OR color parameter is given
Simulator instproc node args {

$self instvar Node_ dist_matrix_
...

#***** ben *****
$dist_matrix_ newnode [$node entry]
#***** neb *****

return $node
}
...
Simulator instproc simplex-link { n1 n2 bw delay qtype args } {

$self instvar link_ queueMap_ nullAgent_ dist_matrix_

#***** ben *****
$dist_matrix_ set delay_ $delay
$dist_matrix_ connect [$n1 entry] [$n2 entry]
#***** neb *****

...
}
...
Simulator instproc attach-agent { node agent } {

$node attach $agent

EPCC-SSP / summer 1999 26

#***** ben *****
$agent set-graph_node [$node entry]
#***** neb *****

}

(ns-2/tcl/lib/ns-link.tcl)

SimpleLink instproc init { src dst bw delay q {lltype "DelayLink"} } {
$self next $src $dst
$self instvar link_ queue_ head_ toNode_ ttl_
$self instvar drophead_

...
#***** ben *****
$queue_ set-graph_node [$src entry]
$link_ set-graph_node [$dst entry]
$ttl_ set-graph_node [$dst entry]
#***** neb *****

}

3.3.3 Consulting the matrix

Theget function of thetm_set class can be used to retrieve the distance between to han-
dlers. It verifies that they are in the same subgraph and return their distance stored in the corre-
sponding matrix, orUNREACHABLEelse.

Finally we can check for conflicts like this :

(ns-2/pscheduler.cc)

//
// check if events e_1 and e_2 conflict
// 0 - no conflict 1 - conflict
//
int
pScheduler::check_conflict(Event* e_1,double t_1, Event* e_2,double t_2){

void ** p1 = e_1->handler_->graph_node_p;
void ** p2 = e_2->handler_->graph_node_p;
double dist;
double t = fabs(t_2 - t_1);

//return 1;
if ((p1==NULL)||(p2==NULL))

{
//fprintf(stdout,"check_conflict : homeless event h1=%d h2=%d\n",e_1->hand l
return 1;

}
//fprintf(stdout,"normal event\n");

EPCC-SSP / summer 1999 27

dist = node_dist::instance->get(*p1,*p2);
if (dist == PTR_NOT_IN) {fprintf(stdout,"pb : not in list\n"); return 1;}
if (dist == UNREACHABLE) {fprintf(stdout,"no conflict found - UNREACHABLE\n");
if (t < dist) return 0; //{fprintf(stdout,"no conflict found\n"); return 0;}
return 1;
// return (t < dist ? 0 : 1);

// printf("t_1:%f t_2:%f",t_1, t_2);
// if ((t_2 - t_1) < 0.0001){printf("\n");return 0;}
// printf("*\n");
// return 1;
}

3.4 Making the parallel scheduler to be one of the multiple schedulers of ns

When you write a script for ns you are allowed to choose what scheduler you want to use.
The default isScheduler/Calendar , but adding the line$ns use-scheduler Heap
would select the heap scheduler. I wrote a few lines to the C++ code to make the parallel
scheduler one of those ones. It is the simplest add to ns you can make ! Just make it visible
from oTcl :

(ns-2/pscheduler.cc)

static class pSchedulerClass : public TclClass {
public:

pSchedulerClass() : TclClass("Scheduler/pScheduler") {}
TclObject* create(int, const char*const*) {

return(new pScheduler);
}
} class_psched;

3.5 Debugging the parallel scheduler

Now here is the real problem that remains with ns : the parallel scheduler still doesn’t work
properly. I have spent three weeks debugging it. I have corrected some bugs but at least one
remains. It must come from the threads safety, or from the conflict checking as well, but I didn’t
even manage to find the cause in the two weeks I spent on that bug. The problem is that I can’t
reproduce it exactly every time, it is a non-deterministic bug (so there is obviously at least a
thread safety bug somewhere).

3.5.1 Writing thread safe code

Since the parallel scheduler uses a taskfarm algorithm, with one master thread and several
worker threads, the accesses to the event queue must be protected (the worker threads may
insert or cancel events in the queue). This job is performed by mutex locking when accessing
the queue.

EPCC-SSP / summer 1999 28

One of the first bug I’ve corrected was caused by those safety precautions. There was a dead-
lock while accessing the queue because those functions where calling other mutex protected
functions. I solved the problem by writing some non locking procedures only for internal pur-
pose, but I prefer the way I’ve protected theptrlist class, but I don’t have enough time to
change it now...

3.5.2 Problems encountered

There were some other problems with the scheduler :

1. TheScheduler class defines a function calleddouble clock() which returns the
current time of simulation. I had to rewrite the declaration to make it overload-able, and
to overload it. It now (in the parallel scheduler only of course) returns the currenttime
of the thread that calls the function.

2. There is a problem when resizing the event queue. I “solved” it by initialising it large
enough for the whole simulation but it doesn’t really properly (and efficiently) solve the
problem.

3. I changed a few other details because of the new compiler : cc complains where gcc
doesn’t.

I also wrote a few lines in the parallel scheduler procedures to measure its timings. I measured
the total time of simulation (that excludes initialisation), the total times spent by each thread
while it locked the event queue, and the total time spent by each thread while waiting to lock
the event queue.

EPCC-SSP / summer 1999 29

4 Conclusion

4.1 The results

I’ve got a few results about data accesses bottlenecks in the parallel scheduler (there are no
communication costs since they are done via global data modifications) : every thread spent in
average 5% to 15% of their execution time waiting for the event queue to be available. What
is a bit strange is that it doesn’t seem to depend on the number of threads involved or the
network size. I guess this is because most of this time is spent while waiting for the mas-
ter thread to free the event queue mutex. This is because the master thread main procedure
(pscheduler::run) has a waiting loop which always lock the queue - read the queue to
check for conflicts - free the queue. I think it would be better to check for conflict only when
inserting or cancelling an event in the queue, or when a worker thread has just finished its task.

Anyway, we must be careful about those results since the parallel scheduler isn’t fully work-
ing yet (I took care of the timings when the results where quite close to the correct output).
There are also severalfprintf statements that might last quite a long time and confuse those
results. And I would add that I didn’t have access to the bench batch queues on lomond, so other
people’s jobs may have confuse the results as well.

4.2 About the SSP

I would say that it was a really good experience for me since I had never worked on such a
big project before, and since I’ve learned a lot about parallel computing at EPCC. So I thank
my supervisors Martin and Geoff and other intersimers Doug and Kostas for having helped me
when I was in trouble and for having given me the opportunity to work on such an interesting
project. I thank also all the EPCC employees and all the other SSP students for having spent a
good stay in Edinburgh with me.

