
Monsters II:

An Alife demonstrator

Monsters II : An Alife

demonstrator

� Jinigrid

� Monsters II

� Monsters I

� Rendering the world

� The virtual world

� Programming problems

� Questions

Jinigrid

� Aim was to provide a grid based in Java using

Jini to co-ordinate services and clients.

� To make Jinigrid distributable.

� Problems

� Makefiles

� Jar libraries

� classpaths vs.. codebases

� Solution?

Monsters II

� Herbivore World…

� A virtual world populated by autonomous

creatures.

� Creatures interact with each other and their

environment.

� They breed, and pass on genetic material which codes

for behavior and appearance.

� Monsters I ...

Creating Monsters II

� Create a rendering engine.

� Must be flexible enough to accommodate different

styles of worlds.

� Design a world biology from the bottom up.

� Agree on basic nutritional elements synthesized and

provided by the plants.

� Design a virtual machine to inhabit the

world.

� Programmable state machine.

� Sufficiently complex to be interesting and

unpredictable

The World

� The world is based upon a grid of squares.

� Grid must be Z x (n x Z) for ease of fractal generation

� Each square has certain attributes:

� Height(actually has x4 heights and x4 normals)

� Temperature at the moment

� Humidity at the moment

� A flag which contains data about what is located on it.

� The meaning of two other data items depends on what this

first flag contains.

Rendering the world

� Rendering engine uses DirectX 7.0

� First we need to find out what is the minimum data

we need to draw. This is dependant on the ‘view

frustrum’ …

� To find the minimum area project the view

frustrum down onto the x-z plane. …

� Sort an array of indexes to the renderable data

based upon the squares textures. This prevents

texture ‘thrashing’.

� Render front-to-back when possible(Z-buffer).

� Render translucent materials last.

Depth perception

� Human eye only uses its ability to change focus for

depth perception of nearby objects.

� Far objects use visual cues:

� Light absorbtion

� Depth fogging (also hides ‘popping’).

� Parallax

� Doom ‘bobbing’.

� Known heights

The virtual world: the terrain

� The terrain is textured with either a base ‘grass’

texture, or a ‘subwater’ texture. It may be overlaid

with a secondary texture if it has a ‘plant’ on it.

� Its textures are modulated by a base colour …

� Its base colour is dependant on its temperature,

� which is a function of its distance from the equator,

� its height,

� and any effects due to its plant occupant.

� This should create arctic and desert regions in the

world, to which the inhabitants (plant and

creature) can adapt.

The virtual world : the plants

� A plant occupies one whole square. It has a species and

an age, but is otherwise not individual. There is no

instances of ‘plants’.

� Some plants are renderable as 3D objects, others

merely provide a texture to use on that square.

� Plants do not die naturally, only by exposure or being

eaten.

� Plants created offline using meta language. ...

� Plants reproduce by seeding nearby squares depending

on environmental factors:

� Proximity to fellow species (Conway)

� Ambient temperature and humidity

� Proximity to a resource (water/rock)

The virtual world: the Monsters

� This is the hard part…

� …and is still very vague.

The virtual world: the Monsters

� Each Monster is an individual instance.

� A Monster has DNA which codes for every part of its

behaviour and appearance.

� Appearance:

� Its appearance is based upon its genetic mutation of a
basic Monster.

� Each has a small individual texture, each distinct but a
variation on its species.

� Its appearance is also matched in its parameters, so large
Monsters will weigh more and use more energy in
movement.

The virtual world: the Monsters

� Reproduction

� Monsters cannot reproduce cross species.

� Monsters reproduce by fertilisation of ‘eggs’.

� Monsters have genders.

� Senses

� They can see, hear and smell their surroundings.

� Pyramid of needs

� Food, water, sleep, reproduction, recreation, discovery.

� Adaptive behaviour (learning).

� This requires them to have ‘memory’.

The virtual world: the Monsters

� Have the concept of a general set of abilities such

as ‘interact with’. These can be applied to anything

in the world. It returns some value or changes a

state. The Monster must be able to judge whether

it prefers that state, and ranks that action as

better or worse then it ranked it before.

� This is a nice idea but may take many generations

before a single working Monster evolves.

� The environment must be diverse enough to allow

‘niche’ specialisation. Complexity is the key to non

determinism and variation.

The world so far

� Early world …

� World 1 …

� World 2 …

� Bug corrected world ...

Problems...

� Fullscreen debugging.

� Time parameterisation.

� Aesthetical programming.

Any questions?

Visible area

View Frustrum

DirectX ‘modulate’

� Call

� IDirect3DDevice->(0, D3DTSSCOLOROP, D3DTOP_MODULATE);

� Tells DirectX to blend texture pixels with

underlying material pixels using the formula

� Final RGBA = Texture RGBA X Material RGBA

� Also has
� MODULATE2X, MODULATE4X, ADD, ADDSIGNED, ADDSIGNED2X, SUBTRACT,

ADDSMOOTH, D3DTOP_BLENDDIFFUSEALPHA, D3DTOP_BLENDTEXTUREALPHA,

D3DTOP_BLENDFACTORALPHA, D3DTOP_BLENDCURRENTALPHA,

BLENDTEXTUREALPHAPM , MODULATECOLOR_ADDALPHA,

MODULATEINVALPHA_ADDCOLOR, MODULATEINVCOLOR_ADDALPHA,

BUMPENVMAP, BUMPENVMAPLUMINANCE and DOTPRODUCT3.

Programming plants

� The plants are created beforehand using a plant

generator application. It allows the user to set the

plants parameters and reactions to a variety of

factors.

� At run time each plant species (identified by a

unique ID) is passed, via the plant manager

singleton, its squares parameters. The plant species

returns a texture ID based on its programmed

‘state’ during the render call.

� During the Update call it takes some action (dies,

grows, reproduces) based on its codes and the

terrain parameters.

